RAPPORT

Affaire: Commune de Gujan-Mestras / SMPBA / DREAL / Commune de La Teste

de Buch

Numéro n°: 2002165

Décision: Ordonnance du 15 juin 2020

Mars 2021

SOMMAIRE

PRESENTATION DE LA MISSION	4
1) Ordonnance du 15 juin 2020 :	4
2) Chronologie de la mission :	4
3) Documents utilisés pour la mission :	5
4) Description de la déposante du Port de la Mole :	
Site de décantation du Port de la Mole à Gujan-Mestras	
1) Constater et consigner par prélèvements et échantillonnages les élémetoxicité des sédiments actuellement stockés	nts constitutifs du degré de 7
1.1 Localisation des prélèvements :	8
2) Constater et consigner par prélèvements et échantillonnages les élémet qualité contemporaine des eaux souterraines et des eaux de surface 2.1 Localisation des prélèvements 2.2 Sens d'écoulement de la nappe d'eau	13
3) Constater l'étanchéité du site de décantation	20
Port de la Teste de Buch et chenal de la Canelette	21
1) Localisation et profondeurs des prélèvements	21
2) Caractérisation des sédiments	22
3.1 Présentation des résultats de la campagne de novembre 2020 3.1 Présentation des résultats selon l'arrêté du 9 aout 2006 3.2 Présentation des résultats de dangerosité 3.3 Présentation des résultats selon l'arrêté du 12 décembre 2014 3.4 Paramètres complémentaires	24 26 28
CONCLUSION	31
Déposante du port de la Mole :	
Port de La teste de Buch et son chenal :	
ANNEYES	33

TABLE DES ILLUSTRATIONS

<u>Figures</u>:

Figure 1 : Principaux documents consultés pour la mission	5
Figure 2 : Principe de fonctionnement du site de stockage et de décantation de la Mole	6
Figure 3 : Localisation des prélèvements de sédiments	
Figure 4 : Présentation des résultats analytiques obtenus dans les prélèvements selon l'arrêt	
09/08/2006	9
Figure 5 : Présentation des résultats analytiques obtenus dans les prélèvements selon l'arrêt	é du
12/12/2014	10
Figure 6 : Présentation des résultats analytiques complémentaires	11
Figure 7 : Synthèse des résultats analytiques (N1/N2 et ISDI)	12
Figure 8 : Localisation des points de prélèvement des eaux superficielles et souterraines	13
Figure 9 : Nivellement relatif et piézométrie (juillet 2020)	14
Figure 10 : Carte piézométrique (juillet 2020)	
Figure 11: Valeurs guides dans les eaux souterraines	16
Figure 12 : Résultats analytiques dans les eaux souterraines (juillet 2020)	17
Figure 13 : Synthèse des résultats analytiques dans les eaux souterraines (juillet 2020)	
Figure 14 : Résultats analytiques dans les eaux superficielles (juillet 2020)	19
Figure 15 : Vue sur le bassin principal creusé dans les sédiments.	20
Figure 16: Localisation des carottages (24 et 25 nov. 2020)	21
Figure 17 : Caractéristiques techniques des carottages et géoréférencement	22
Figure 18 : Présentation des résultats analytiques obtenus dans les sédiments du Chenal selo	on
1'arrêté du 09/08/2006	24
Figure 19 : Présentation des résultats analytiques obtenus dans les sédiments du Port selon l	l'arrêté
du 09/08/2006	25
Figure 20 : Evaluation de la dangerosité de l'échantillon composite Chenal	26
Figure 21 : Evaluation de la dangerosité de l'échantillon composite du Port	27
Figure 22 : Présentation des résultats analytiques obtenus dans les sédiments selon l'arrêté o	du
12/12/2014	28
Figure 23 : Présentation des résultats analytiques complémentaires	29
Figure 24 : Synthèse des résultats analytiques du port et de son chenal (N1/N2 et ISDI)	30

PRESENTATION DE LA MISSION

1) Ordonnance du 15 juin 2020 :

Les investigations objet du référé expertise sont décrites à l'article 1 de l'Ordonnance précitée :

- « Article 1_{er} : M. Christophe Albarran, 40 rue de la Bouhume à Léognan (33850) est désigné comme expert hydrogéologue avec pour mission de :
- 1°) se rendre sur le site de décantation du Port de la Mole à Gujan-Mestras (33470) et de :
- constater et consigner par prélèvements et échantillonnages les éléments constitutifs du degré de toxicité contemporaine des sédiments actuellement stockés sur le site de décantation et de traitement du port de la Mole ;
- constater et consigner par prélèvements et échantillonnages les éléments permettant d'évaluer la qualité contemporaine des eaux souterraines et de surface du site de décantation du Port de la Mole ;
- constater l'état de l'étanchéité du site de décantation du Port de la Mole au droit des nappes d'eaux souterraines ;
- 2°) se rendre sur le site du port de la Teste de Buch et du chenal de la Canelette pour constater et consigner par prélèvements et échantillonnages les éléments constitutifs du degré de toxicité contemporaine des sédiments à extraire par l'effet du dragage du port et du chenal et qui sont destinés à être stockés et agrégés aux sédiments présents sur le site de décantation du port de la Mole. »

Deux zones sont à investiguer :

- > la déposante du port de La Mole,
- la zone du dragage à effectuer à savoir le port de la Teste de Buch et son chenal.

2) Chronologie de la mission :

La réunion de lancement des opérations a eu lieu le 2 juillet 2020 à la Mairie de Gujan-Mestras (Cf. Feuille de présence en Annexe I).

Au cours de cette réunion, la Mairie de Gujan-Mestras a demandé à ce que les prélèvements dans les sédiments du port de La Teste de Buch et de son chenal soient réalisés à une profondeur de 1,5 mètre. Pour information, la profondeur standard des prélèvements est de 1 mètre.

Il a donc été convenu de se renseigner sur le surcoût de prélèvements à 1,5 mètre et surtout de trouver des prestataires disponibles.

Afin de pouvoir lancer les investigations sur la déposante du port de La Mole, j'ai passé commande auprès de la société TEREO le 9 juillet 2020 sur la base d'une proposition technico-financière établie sur des prélèvements dans le port à une profondeur de 1 mètre. L'Ordonnance du 15 juillet 2020 du Tribunal Administratif de Bordeaux a fixé l'allocation provisionnelle à 23 837,78 € sur la base du devis de la société TEREO. Cette Ordonnance a été payée par la Mairie de Gujan-Mestras le 23 juillet 2020.

La campagne d'investigations sur la déposante du port de La Mole s'est déroulée le 29 juillet 2020.

Après des recherches de prestataires en période estivale pour des sondages profonds, l'Université de Tours a fait une proposition acceptée par la partie demanderesse le 28 octobre 2020.

En raison du second confinement, le Président de l'Université de Tours (Cf. Annexe II) nous a indiqué le 3 novembre 2020 qu'il n'autorisait pas ses équipes à aller sur le terrain.

La société Téréo, missionnée dès le début de l'expertise s'est alors proposée d'aller chercher le matériel à Tours pour pouvoir effectuer les prélèvements.

Lors de la réunion du 2 juillet 2020, la Maire de Gujan-Mestras avait indiqué que pour les prélèvements dans le chenal et le port, elle mettrait à disposition l'embarcation d'un de ses adjoints. Après la défection de l'université de Tours et afin d'éviter toute suspicion, nous avons convenu qu'il serait préférable de louer une embarcation à un professionnel n'étant pas partie au procès. Pour ne pas retarder les investigations, à ma demande, la Mairie de Gujan-Mestras a loué à la société DUPUY deux journées de déplacement en bateau pour réaliser les prélèvements (Cf. Annexe IV).

La campagne de prélèvements dans le port de La Teste de Buch et son chenal s'est déroulée les 23 et 24 novembre 2020.

Enfin, j'ai demandé par courriel aux parties si elles souhaitaient suivre les prélèvements dans le port de La Teste de Buch. Le SMPBA m'a indiqué par courriel du 20 novembre ne pas pouvoir assister aux opérations et par téléphone se réserver le droit de contester mes résultats le cas échéant. J'ai alors demandé l'avis du Tribunal administratif qui m'a répondu par courriel du 20 novembre que je pouvais maintenir mes opérations de prélèvements des 23 et 24 novembre.

3) Documents utilisés pour la mission :

Le tableau ci-dessous indique les documents utilisés pour l'expertise.

Date	Auteur	Type document	Référence
mai-20	Me Jacques Borderie	Requête aux fins d'ordonnance de constat	Tribunal administratif de Bordeaux
oct-19	Préfecture de la Gironde	Arrêté préfectoral	Arrêté du 4 octobre 2019 portant prescriptions complémentaires relatives à l'exploitation d'une installation d'une installation de gestion à terre des sédiments SMPBA à Gujan-Mestras
sept-19	VALEEN	PRELEVEMENTS ET ANALYSES D'EAUX SOUTERRAINES	RAPPORT VAL670-B DU 4 SEPTEMBRE 2019
juin-18		Etude sur la qualité des sédiments du Port de la Teste et de son chenal	SRC-1711-IEE-V2-Juin 2018
nov-16	GEODE	Guide	Bonnes pratiques pour la caractérisation des matériaux en vue d'une opération de dragage et d'immersion en milieu marin

Figure 1 : Principaux documents consultés pour la mission

Tous les documents cités dans le tableau ci-dessus ne figurent pas dans les Annexes. En effet d'une part dans le respect du contradictoire ils ont été échangés entre les P

En effet, d'une part, dans le respect du contradictoire ils ont été échangés entre les Parties et d'autre part, j'ai présenté dans mes écrits les informations nécessaires à la compréhension des enjeux de l'affaire.

4) Description de la déposante du Port de la Mole :

La figure présentée ci-dessous rappelle le principe de fonctionnement du bassin de décantation du port de la Mole :

Figure 2 : Principe de fonctionnement du site de stockage et de décantation de la Mole

Site de décantation du Port de la Mole à Gujan-Mestras

Pour faciliter la lecture du rapport, les données relatives aux prélèvements du 29 juillet 2020 sont données en Annexe III.

1) Constater et consigner par prélèvements et échantillonnages les éléments constitutifs du degré de toxicité des sédiments actuellement stockés

1.1 Localisation des prélèvements :

Comme convenu lors de la réunion du 2 juillet 2020, nous avons effectué trois sondages au niveau du talus « fermant » le site côté Bassin. L'objectif de ces échantillons (T1 à T3) est de mesurer la qualité des matériaux pérennes par opposition aux sédiments dans les différents casiers qui sont valorisés à l'extérieur du site après séchage.

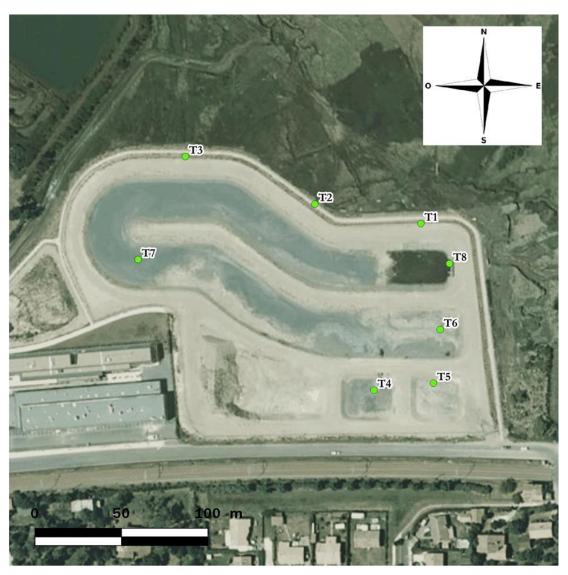


Figure 3 : Localisation des prélèvements de sédiments

Les résultats du laboratoire sont donnés en Annexe VI.

1.2 Caractérisation des sédiments

Deux approches complémentaires sont proposées afin d'étudier le degré de contamination des sédiments :

• une comparaison « aux niveaux à prendre en compte lors d'une analyse de rejets dans les eaux de surface ou de sédiments marins, estuariens ou extraits de cours d'eau ou canaux relevant respectivement des rubriques 2.2.3.0, 4.1.3.0 et 3.2.1.0 de la nomenclature annexée à l'article R. 214-1 du code de l'environnement » - arrêté du 9 août 2006.

Plus spécifiquement, concernant les sédiments marins et estuariens, l'arrêté propose deux niveaux de comparaison: N1 et N2. Comme précisé par le groupe GEODE (Groupe d'Etudes et d'Observation sur les Dragages et l'Environnement) ces niveaux ne sont pas des seuils visant à autoriser ou à interdire de fait l'immersion de sédiments. Ils constituent des points de repère permettant à la fois de statuer sur le régime administratif de l'opération (déclaration ou autorisation) et d'apprécier l'incidence que peut avoir l'opération projetée, et donc d'orienter une opération soit vers l'immersion de sédiments, soit vers leur gestion à terre.

- o au-dessous du niveau N1, l'impact potentiel est en principe jugé d'emblée neutre ou négligeable, les teneurs étant « normales » ou comparables au bruit de fond environnemental :
- entre le niveau N1 et le niveau N2, une investigation complémentaire peut s'avérer nécessaire en fonction du projet considéré et du degré de dépassement du niveau N1;
- o au-delà du niveau N2, une investigation complémentaire est généralement nécessaire car des indices notables laissent présager un impact potentiel négatif de l'opération.
- une comparaison aux seuils définis dans l'arrêté du 12 décembre 2014 précisant les modalités d'acceptation des déchets dans les Installations de Stockages de Déchets Inertes.

1.2.1 Présentation des résultats selon l'arrêté du 9 août 2006

Le tableau suivant présente les résultats analytiques obtenus sur les prélèvements T1 à T8.

Les résultats analytiques présentés dans le tableau suivant respectent le code couleur suivant :

- non surligné pour les teneurs qui sont inférieures aux seuils N1 et N2;
- surligné en **jaune**, pour les paramètres supérieurs aux seuils N1 mais inférieurs aux seuils N2 ;
- surligné en **orange**, pour les teneurs supérieures aux seuils N2.

	Paramètres	Unités	T 1	T 2	Т 3	T 4	T 5	T 6	Т7	T 8	N1	N2
	Matière sèche	% P.B.	98,7	98,3	96,5	57	56,7	66,6	65,9	70,2	/	/
	Arsenic (As)		9,83	12,9	5,23	25	38,1	28,5	39,7	27,6	25	50
	Cadmium (Cd)		<0,10	<0,10	<0,10	0,39	0,5	0,55	<0,10	0,3	1,2	2,4
	Chrome (Cr)		9,65	10,2	3,87	34,7	43,7	36,8	41	36,2	90	180
	Cuivre (Cu)		6,69	5,01	<5,00	17,9	26,2	19,8	15,4	20,4	45	90
	Mercure (Hg)		<0,10	<0,10	<0,10	0,13	0,24	0,13	<0,10	0,19	0,4	0,8
	Nickel (Ni)		5,25	5,34	2,79	17	21,8	18,7	17,1	18,8	37	74
	Plomb (Pb)		34,1	111	<5,00	38,5	62,7	46,5	115	80,2	100	200
	Zinc (Zn)		35,1	30,4	13,4	125	178	145	82,4	123	276	552
	PCB 28		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,005	0,01
	PCB 52		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,005	0,01
	PCB 101		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,01	0,02
PCB	PCB 118		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,01	0,02
	PCB 138		<0,001	<0,001	<0,001	<0,001	<0,001	0,0014	<0,001	0,0017	0,02	0,04
	PCB 153		<0,001	<0,001	<0,001	<0,001	<0,001	0,0018	<0,001	0,0013	0,02	0,04
	PCB 180		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,0013	0,01	0,02
	Naphtalène	mg/kg M.S.	0,0086	0,0051	<0,002	0,012	0,01	0,01	0,005	0,0042	0,16	1,13
	Acénaphtène		0,01	0,0074	0,0029	0,011	0,02	0,011	0,0064	0,0052	0,015	0,26
	Acénaphthylène		0,064	0,044	0,021	0,092	0,14	0,032	0,023	0,057	0,04	0,34
	Fluorène		0,032	0,023	0,0083	0,031	0,05	0,038	0,021	0,018	0,02	0,28
	Anthracène		0,061	0,034	0,02	0,093	0,11	0,05	0,021	0,051	0,085	0,59
	Phénanthrène		0,21	0,14	0,062	0,3	0,4	0,2	0,09	0,19	0,24	0,87
Hydrocarbures	Fluoranthène		0,82	0,65	0,27	0,95	1,4	0,61	0,3	0,66	0,6	2,85
Aromatiques	Pyrène		0,66	0,48	0,22	0,8	1,1	0,49	0,24	0,49	0,5	1,5
Polycycliques	Benzo-(a)-anthracène		0,42	0,27	0,14	0,63	0,84	0,29	0,16	0,36	0,26	0,93
1 olycychques	Chrysène		0,46	0,32	0,15	0,46	0,62	0,33	0,19	0,25	0,38	1,59
	Benzo(b)fluoranthène		0,67	0,43	0,23	0,78	1,1	0,52	0,3	0,46	0,4	0,9
	Benzo(k)fluoranthène		0,2	0,19	0,073	0,23	0,35	0,18	0,11	0,16	0,2	0,4
	Benzo(a)pyrène		0,49	0,31	0,17	0,68	0,95	0,37	0,21	0,4	0,43	1,015
	Dibenzo(a,h)anthracène		0,22	0,14	0,068	0,19	0,25	0,15	0,085	0,12	0,06	0,16
	Benzo(ghi)Pérylène		0,41	0,23	0,13	0,36	0,48	0,27	0,15	0,23	1,7	5,65
	Indeno (1,2,3-cd) Pyrène		0,35	0,21	0,11	0,39	0,52	0,23	0,13	0,25	1,7	5,65
Tr	ibutylétain cation-Sn (TBT)	μg Sn/kg M.S.	3,5	2,5	2,2	6,6	2,8	6,3	2,5	6,7	100	400

Figure 4 : Présentation des résultats analytiques obtenus dans les prélèvements selon l'arrêté du 09/08/2006

1.2.2- Présentation des résultats selon l'arrêté du 12 décembre 2014

Le tableau suivant présente les résultats analytiques obtenus sur les prélèvements T1 à T8.

Les résultats analytiques présentés dans le tableau suivant respectent le code couleur suivant :

- non surligné pour les teneurs qui sont inférieures aux seuils ISDI (Installations de Stockage de Déchets Inertes) ;
- surligné en vert, pour les respectent les seuils ISDI en considérant les points dérogatoires précisés dans l'arrêté ;
- surligné en **rouge**, pour les teneurs supérieures aux seuils ISDI.

	Pa	ramètres	Unités	T 1	T 2	Т 3	T 4	T 5	Т 6	T 7	Т 8	seuils ISDI (*): exeptions possibles
		latière sèche	% P.B.	98,7	98,3	96,5	57	56,7	66,6	65,9	70,2	
	Carbone Organi	que Total par Combustion	mg/kg MS	12500	9230	2260	26900	31100	24300	23800	22800	30000 (*)
		Indice Hydrocarbures (C10-C40)		31,3	<15,0	<15,0	97,4	159	106	47,9	61,2	500
	Hydrocarbures totaux	HCT (nC10 - nC16) (Calcul)	4 3.50	5,09	-	-	3,34	2,89	2,15	0,68	2,47	
	(4 tranches) (C10-C40)	HCT (>nC16 - nC22) (Calcul)	mg/kg MS	2,29	-	-	12,8	16,9	11,3	3,74	6,74	
		HCT (>nC22 - nC30) (Calcul)		7,93	-	-	31,8	52,5	35,2	13,1	19,1	
		HCT (>nC30 - nC40) (Calcul)		16	- 0.0054	-	49,4	86,5	56,9	30,3	32,9	
		Naphtalène		0,0086	0,0051	<0,002	0,012	0,01	0,01	0,005	0,0042	
		Fluorène		0,032	0,023	0,0083	0,031	0,05	0,038	0,021	0,018	
		Phénanthrène		0,21	0,14	0,062	0,3	0,4	0,2	0,09	0,19	
		Pyrène		0,66	0,48	0,22	0,8	1,1	0,49	0,24	0,49	
		Benzo-(a)-anthracène		0,42	0,27	0,14	0,63	0,84	0,29	0,16	0,36	
		Chrysène		0,46	0,32	0,15	0,46	0,62	0,33	0,19	0,25	
	TT 1 1	Indeno (1,2,3-cd) Pyrène		0,35	0,21	0,11	0,39	0,52	0,23	0,13	0,25	
	Hydrocarbures	Dibenzo(a,h)anthracène	/1 3.56	0,22	0,14	0,068	0,19	0,25	0,15	0,085	0,12	
-	Aromatiques	Acénaphthylène	mg/kg MS	0,064	0,044	0,021	0,092	0,14	0,032	0,023	0,057	
brut	Polycycliques (16 HAPs)	Acénaphtène		0,01	0,0074	0,0029	0,011	0,02	0,011	0,0064	0,0052	
III		Anthracène		0,061	0,034	0,02	0,093	0,11	0,05	0,021	0,051	
Analyses sur		Fluoranthène		0,82	0,65	0,27	0,95	1,4	0,61	0,3	0,66	
lyse		Benzo(b)fluoranthène		0,67	0,43	0,23	0,78	1,1	0,52	0,3	0,46	
v u a		Benzo(k)fluoranthène		0,2	0,19	0,073	0,23	0,35	0,18	0,11	0,16	
₹4		Benzo(a)pyrène		0,49	0,31	0,17	0,68	0,95	0,37	0,21	0,4	
		Benzo(ghi)Pérylène Somme des HAP		0,41 5,1	0,23	0,13	0,36	0,48 8,3	0,27 3,8	0,15 2	0,23	50
			mg/kg MS	-	3,5	1,7			-		3,7	50
		PCB 28 PCB 52		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	
	_			<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	
	PCB congénères	PCB 101 PCB 118		<0,001	<0,001	<0,001 <0,001	<0,001	<0,001 <0,001	<0,001 <0,001	<0,001	<0,001 <0,001	
	réglementaires (7	PCB 138		<0,001 <0,001	<0,001 <0,001	<0,001	<0,001 <0,001	<0,001	0,0014	<0,001 <0,001	0,0017	
	composés) (Brut)	PCB 153		<0,001	<0,001	<0,001	_	<0,001	0,0014	<0,001	0,0017	
		PCB 180		<0,001	<0,001	<0,001	<0,001	<0,001	<0,0018	<0,001	0,0013	
		SOMME PCB (7)		0,004	0,004	0,004	0,004	0,004	0,006	0,004	0,0013	1
		Benzène		<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	1
		Toluène		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	
		Ethylbenzène		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	
	BTEX	o-Xylène	mg/kg MS	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	
		m+p-Xylène		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	
		Somme des BTEX		0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	6
	Fra	action soluble	mg/kg MS	3590	7670	3060	8930	28700	13000	14400	38100	4000 (*)
	Carbone Organ	ique par oxydation (COT)	mg/kg MS	150	340	120	230	280	180	190	920	500
	C	hlorures (Cl)	mg/kg MS	32,3	48,3	28,5	1680	1870	2710	5870	2850	800 (*)
		Fluorures	mg/kg MS	<5,00	<5,00	<5,00	5,42	9,88	<5,00	9,21	7,06	10
		Sulfates	mg/kg MS	57,5	194	<50,0	2060	16600	3290	2190	1640	1000 (*)
	Indice ph	énol (calcul mg/kg)	mg/kg MS	<0,50	<0,50	<0,50	<0,52	<0,50	<0,51	<0,52	<0,51	1
Analyses sur éluat		Arsenic (As) ICP/AES Eluat		<0,20	<0,20	<0,20	<0,21	<0,20	<0,20	<0,21	0,53	0,5
r él		Baryum (Ba) ICP/AES Eluat		0,35	0,22	0,14	0,35	0,18	0,35	0,21	0,26	20
S		Chrome (Cr) (ICP/AES) Eluat		<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	0,11	0,5
ses		Cuivre (Cu) ICP/AES Eluat		<0,20	0,23	<0,20	<0,21	<0,20	<0,20	<0,21	0,52	2
laly		Molybdène (Mo) ICP/AES Eluat		<0,01	0,028	0,016	0,156	<0,01	<0,010	0,217	0,141	0,5
An	Métaux	Nickel (Ni) ICP/AES Eluat	mg/kg MS	<0,10	<0,10	<0,10	<0,10	3,13	<0,10	<0,10	0,12	0,4
	Metaux	Plomb (Pb) ICP/AES Eluat	₈ / ₈	0,49	3,65	0,19	0,11	0,41	0,19	<0,10	2,82	0,5
		Zinc (Zn) (ICP/AES) Eluat		0,51	0,63	0,36	0,23	51,5	0,88	0,36	2,63	4
		Mercure (Hg) sur éluat		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,01
		Antimoine (Sb) (ICP/MS) Eluat		0,009	0,037	0,031	0,015	0,061	0,005	0,011	0,014	0,06
		Cadmium (Cd) (ICP/MS) Eluat		<0,002	<0,002	<0,002	<0,002	0,29	0,004	<0,002	0,005	0,04
		Sélénium (Se) (ICP/MS) Eluat		<0,01	<0,01	<0,01	<0,01	0,044	<0,01	<0,01	0,028	0,1

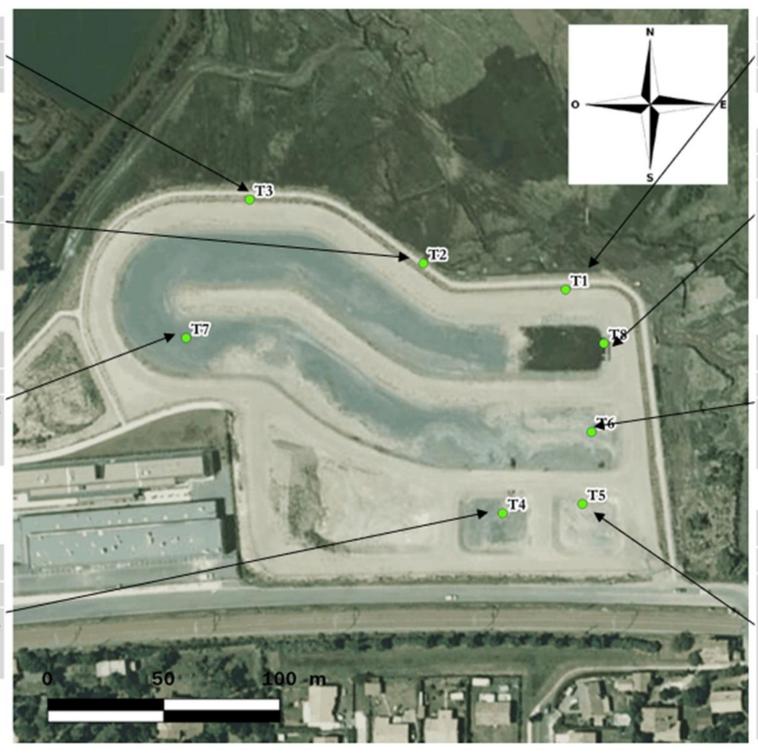
Figure 5 : Présentation des résultats analytiques obtenus dans les prélèvements selon l'arrêté du 12/12/2014

1.2.3 Paramètres complémentaires

En complément, afin de parfaire la connaissance physico-chimique des sédiments étudiés, et notamment en se basant sur les préconisations figurant dans les guides proposés par le Groupe GEODE en 2016 et le Cerema en 2018, des analyses complémentaires ont été menées. Ces dernières, non interprétées, sont présentées ci-dessous :

Paramètres	Unités	T1	T2	Т3	T4	T5	Т6	T7	T8
Pourcentage cumulé 0.02 à 2 µm	%	1,32	1,34	0,91	4,18	6,69	5,48	6,64	3,39
Pourcentage cumulé 0.02 à 20 μm	%	9,36	9,61	5,59	40,13	57,46	48,28	52,03	29,79
Pourcentage cumulé 0.02 à 63 μm	%	13,44	14,31	8,61	77,11	89,05	78,74	69,53	45,04
Pourcentage cumulé 0.02 à 200 μm	%	14,88	17,72	11,21	90,84	93,76	87,92	74,91	47,87
Pourcentage cumulé 0.02 à 2000 µm	%	100	100	100	100	100	100	100	100
Fraction 2 - 20 μm	%	8,04	8,27	4,67	35,95	50,77	42,79	45,39	26,4
Fraction 20 - 63 μm	%	4,07	4,7	3,02	36,97	31,59	30,47	17,5	15,25
Fraction 63 - 200 μm	%	1,45	3,41	2,6	13,74	4,71	9,17	5,38	2,83
Fraction 200 - 2000 μm	%	85,12	82,28	88,8	9,16	6,24	12,08	25,09	52,13
Azote Kjeldahl (NTK)	g/kg M.S.	<0,5	<0,5	<0,5	2,9	3,9	3,3	2	1,6
Aluminium (Al)	mg/kg M.S.	4560	4580	2020	15500	19300	15100	18800	17000
Antimoine (Sb)	mg/kg M.S.	<1,00	2,6	<1,00	<1,00	<1,00	1,47	<1,03	<1,00
Baryum (Ba)	mg/kg M.S.	30,7	8,11	3,75	25,1	31,1	26,8	20,7	24,4
Molybdène (Mo)	mg/kg M.S.	1,09	1,51	<1,00	2,16	2,94	3,54	4,47	5,08
Phosphore (P)	mg/kg M.S.	215	214	86,1	488	674	586	1100	613
Sélénium (Se)	mg/kg M.S.	0,34	0,49	0,21	1,22	1,76	1,26	1,51	1,46
Phosphore total (P2O5)	mg/kg M.S.	493	490	197	1120	1550	1340	2520	1400
Dibutylétain cation-Sn (DBT)	μg Sn/kg M.S.	<2,0	<2,0	<2,0	3,2	2,2	2,2	<2,0	2,3
Tétrabutylétain -Sn (TeBT)	μg Sn/kg M.S.	<10	<10	<10	<10	<10	<10	<10	<10
Monobutylétain cation-Sn (MBT)	μg Sn/kg M.S.	<2,0	<2,0	<2,0	<2,0	2,9	2,8	<2,0	3,7
Triphénylétain cation-Sn (TPhT)	μg Sn/kg M.S.	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
MonoOctyletain cation-Sn (MOT)	μg Sn/kg M.S.	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
DiOctyletain cation-Sn (DOT)	μg Sn/kg M.S.	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
Tricyclohexyletain cation-Sn (TcHexT)	μg Sn/kg M.S.	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
Escherichia coli	NPP/g	< 56	< 56	< 56	< 56	< 56	< 56	< 56	< 56

Figure 6 : Présentation des résultats analytiques complémentaires


La figure suivante présente une synthèse des résultats analytiques basée sur les critères de classification des arrêtés du 9 août 2006 et du 12 décembre 2014 :

T3: Analyse	s supérieure	s aux seuils
N1	N2	ISDI
HAP	SO	50
	***	***

T2 : Analyse	es supérieur	es aux seuils
N1	N2	ISDI
Plomb HAP	<u>so</u>	Plomb

T7 : Analyse	s supérieu	ires aux seuils
N1	N2	ISDI
Arsenic		Fraction sol.
Plomb	80	Chlorures
HAP		Sulfates

14:	Analyse	s superieu	res aux seuils
	N1	N2	ISDI
F	HAP	so.	Fraction sol. Chlorures Sulfates

T1 : Analyses supérieures aux seuils						
N1	N2	ISDI				
HAP	HAP	SO				

T8 : Analyse	s supérieu	res aux seuils
N1	N2	ISDI
Arsenic HAP	<u>\$0.</u>	Fraction sol. Chlorures Sulfates Arsenic Plomb

T6 : Analyses supérieures aux seuils									
N1	N2	ISDI							
Arsenic HAP	<u>\$0.</u>	Fraction sol. Chlorures Sulfates							

T5 : Analyse	s supérieu	res aux seuils
N1	N2	ISDI
Arsenic HAP	HAP	Nickel Zinc Antimoine Cadmium Fraction sol. Chlorures Sulfates

Figure 7 : Synthèse des résultats analytiques (N1/N2 et ISDI)

Les sédiments pérennes (T1 à T3) sont de meilleure qualité chimique que ceux en cours de transit (T4 à T8) sur la déposante du Port de la Mole.

2) Constater et consigner par prélèvements et échantillonnages les éléments permettant d'évaluer la qualité contemporaine des eaux souterraines et des eaux de surface

2.1 Localisation des prélèvements

Nous avons effectué les prélèvements dans les piézomètres disponibles. En effet, en amont des investigations de terrain, nous avons signalé que certains piézomètres avaient été détruits.

Figure 8 : Localisation des points de prélèvement des eaux superficielles et souterraines

2.2 Sens d'écoulement de la nappe d'eau

La piézométrie mesurée le 29 juillet 2020 est présentée dans le tableau ci-dessous :

0	Lamb	ert 93	Repère de	Altitude	Niveau d'eau (m)	Niveau de fond	Piézométrie	
Ouvrage	X	Y	mesure	relative (m)	Niveau d eau (iii)	(m)	relative (m)	
Pz1	378 675	6 402 088	Tête haute	5,45	4,61	9,20	0,84	
Pz2	378 595	6 402 210	PVC	4,89	4,32	9,52	0,57	
Pz3	378 481	6 402 239	Tête haute	4,98	4,23	9,98	0,75	
Pz4	378 464	6 402 165	Tête haute	5,38	4,58	8,64	0,8	

Figure 9 : Nivellement relatif et piézométrie (juillet 2020)

La figure suivante présente une cartographie du sens d'écoulement des eaux souterraines au droit du site le 29 juillet 2020 :

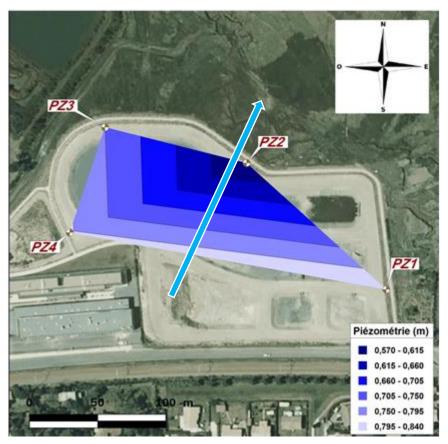


Figure 10 : Carte piézométrique (juillet 2020)

La modélisation de la piézométrie semble indiquer un sens d'écoulement des eaux souterraines en direction du nord-est, vers le Bassin d'Arcachon. Le gradient hydraulique est de 0,19 %.

Au regard de la carte piézométrique ci-dessus, les ouvrage PZ1 et PZ4 sont localisés à l'amont du site. L'ouvrage PZ2 est quant à lui positionné à l'aval et enfin, l'ouvrage PZ3 est localisé à l'aval latéral du site.

Les teneurs mesurées dans les eaux sont comparées, à titre indicatif, aux « Valeurs réglementaires pour les substances chimiques, en vigueur dans l'eau au 30 juin 2020 » (rapport d'étude INERIS-20-200358-2190502-v 1.0, daté du 19 octobre 2020).

Le tableau ci-dessous explicite la démarche intellectuelle pour étudier, conformément aux textes du ministère en charge de l'environnement du 8 février 2007, la qualité géochimique des eaux s'écoulant au droit d'un site.

Quels sont les objectifs de l'étude	Étudier l'impact éventuel des activités exercées au droit d'un site milieux.	e sur ces					
géochimique des eaux souterraines et/ou superficielles?	Évaluer, en cas d'impact avéré, les risques environnementaux et/ou sanitaires qui y sont associés.						
Quels sont les moyens mis en œuvre	Comparer les teneurs obtenues entre l'amont et l'aval (hydrogéologique ou hydraulique) de la zone d'étude afin de distinguer un éventuel impact de celle-ci sur le milieu étudié.						
pour répondre aux objectifs visés ?	Évaluer, en fonction des valeurs de gestion réglementaires en vigueur et du contexte environnemental, s'il existe un risque sanitaire et/ou un risque environnemental directement imputable aux eaux issues de la zone étudiée.						
	Annexe I et II de l'arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines	E,					
Quels sont les outils réglementaires permettant d'évaluer la qualité des eaux ?	Annexe II de l'arrêté du 11 janvier 2007 relative aux limites de qualité des eaux brutes utilisées pour la production d'eau destinées à la consommation humaine.						
	A défaut, ou si un usage pour la consommation humaine est constaté, l'annexe I de l'arrêté du 11 janvier 2007 qui spécifie les limites et références de qualité des eaux destinées à la consommation humaine, ainsi que les valeurs guide de l'OMS (Organisation Mondiale de la Santé).	Eaux souterraines					

Aucune valeur guide pertinente n'est retenue, à titre comparatif, pour l'étude de la qualité des eaux superficielles. Aucun code couleur n'est donc proposé sur les résultats présentés dans la suite du document.

Le tableau ci-dessous présente les valeurs guides retenues dans les eaux souterraines et indique les sources de ces valeurs :

			VALE	VALEURS DE GESTION REGLEMENTAIRES UTILISÉES (µg/l)								
			Annexe I et II de l'arrêté du 17 décembre 2008	Annexe II de l'arrêté du 11 janvier 2007		Lignes directrices fixées par l'OMS (Organisation Mondiale de la Santé)						
	PARAMETRES		Valeurs seuils prioritaires	Valeurs seuils	à utiliser dans la seule m	ndicatives ou esure où un usage pour la maine est constaté						
	Antimoine				5	20						
	Arsenic		10	100	10	10						
	Baryum				700	700						
	Cadmium		5	5	5	3						
	Carbone Organique To	tal		10 000								
	Chlorures			200 000								
	Chrome total			50	50	50						
	Cuivre				2 000	2 000						
	Fluorures				1 500	1 500						
	Plomb		10	50	10	10						
	Mercure inorganique		1	1	1	6						
	Molybdène					70						
	Nickel				20	70						
	Zinc			5 000		3 000						
	Hydrocarbures dissou	8		1 000								
	Benzène				1	10						
	Toluène					700						
BTEX	Xylènes					500						
	Ethylbenzène					300						
	Styrène					20						
		zo(a)pyrène			0,01							
НАР	benzo(b)fluoranth benzo(a)pyrène, benzo(sés suivants : fluomnthène, ène, benzo(k)fluomnthène, g, h, i)pérylène et indéno(1,2,3- d)pyrène		1								
	benzo(k)fluoranthène, ben	uivants : benzo(b)fluomnthène, zo(g, h, i)pérylène et indéno(1,2,3- d)pyrène			0,1							
	Valeurs seuils réglementa	ires										
	Valeurs indicatives réglemen	ntzires										

Figure 11: Valeurs guides dans les eaux souterraines

Les résultats analytiques présentés dans les tableaux ci-dessous respectent le code couleur suivant :

Non surligné pour les teneurs qui sont inférieures à la limite de quantification du laboratoire ;

Surligné en bleu, pour les paramètres détectés mais ne possédant pas de valeurs de référence ;

Surligné en vert, pour les teneurs inférieures aux valeurs de comparaison ;

Surligné en rouge, pour les composés présents à des teneurs supérieures aux valeurs de comparaison.

Les résultats obtenus sur les eaux souterraines, à l'issue de la campagne de prélèvements de juillet 2020 sont reportés dans le tableau suivant :

	Paramètres	Unités	Pz 1	Pz 2	Pz 3	Pz 4	Valeurs guides
Matiè	res en suspension (MES) par filtration	mg/l	980	350	80	1800	-
	Chlorures	mg/l	955	1180	253	410	-
	Sulfates	mg/l	398	293	1530	245	-
	Demande Chimique en Oxygène	mg O2/1	227	<50	<50	251	-
	em ande Biochimique en Oxygène	mg O2/1	7 57	<3,00	<3,00	4	-
	Carbone Organique Total (COT) Fluorures	mg C/l mg/l	0,65	19 0,89	28 0,68	40	10 1,5
	Indice phénol	μg/l	<10	<10	<10	<10	100
	Antimoine (Sb)	mg/l	<0,02	<0,02	<0,02	<0,02	5
	Arsenic (As)	mg/l	0,039	0,01	0,027	0,121	0,01
	Baryum (Ba)	mg/l	0,153	0,182	0,049	0,235	0,7
	Cadmium (Cd)	mg/l	<0,005	<0,005	<0,005	<0,005	0,005
	Chrome (Cr) Cuivre (Cu)	mg/l	0,01	0,007	<0,005 <0,01	0,012	0,05
	Molybdène (Mo)	mg/l mg/l	<0,005	<0,005	<0,01	< 0,005	0,07
	Nickel (Ni)	mg/l	0,012	0,008	0,006	0,013	0,02
	Plomb (Pb)	mg/l	0,082	0,04	0,038	0,29	0,01
	Sélénium (Se)	mg/l	<0,01	<0,01	<0,01	<0,01	0,01
	Zinc (Zn)	mg/l	0,1	0,03	<0,02	0,13	5
	Mercure (Hg)	μg/l	<0,20	< 0,20	<0,20	< 0,20	1
	Indice Hydrocarbures (C10-C40) HCT (nC10 - nC16) (Calcul)	mg/l mg/l	0,385 0,016	0,082	<0,03 <0,008	0,238 0,012	-
Hydrocarbures	HCT (>nC16 - nC22) (Calcul)	mg/l	0,03	<0,008	<0,008	0,041	-
totaux	HCT (>nC22 - nC30) (Calcul)	mg/l	0,292	0,041	<0,008	0,113	-
	HCT (>nC30 - nC40) (Calcul)	mg/l	0,047	0,026	<0,008	0,071	-
	Naphtalène	μg/l	<0,01	0,02	<0,01	0,07	-
	Acénaphthylène	μg/l	0,14	<0,01	<0,01	0,22	-
	Acénaphtène	μg/l	<0,01	<0,01	<0,01	0,01	-
	Fluorène Phénanthrène	μg/l	0,03	<0,01	<0,01	0,05	-
	P nenanturene Anthracène	μg/l	0,22 0,11	<0,01 <0,01	0,02 <0,01	0,34 0,15	-
	Fluoranthène*	μg/l μg/l	1	0,04	0,06	1,2	-
	Pyrène	μg/l	0,68	0,03	0,04	0,76	-
	Benzo-(a)-anthracène	μg/l	1,4	0,01	0,03	1,4	-
	Chrysène	μg/l	0,71	0,01	0,02	0,93	-
Hydrocarbures	Benzo(b)fluoranthène*/**	μg/l	1,3	0,04	0,04	1,9	-
Aromatiques	Benzo(k)fluoranthène*/**	μg/l	0,65	0,01	0,01	0,69	-
Polycycliques	Benzo(a)pyrène*	μg/l	1,66	0,0273	0,0305	1,96	0,1
	Dibenzo(a,h)anthracène	μg/l	0,31	<0,01	<0,01	0,42	-
	Benzo(ghi)Pérylène*/**	μg/l	0,83	0,02	0,02	1,1	-
	Indeno (1,2,3-cd) Pyrène*/**	μg/l	1	0,02	0,02	1,2	-
	Somme des composés suivants* : fluoranthène, benzo(b)fluoranthène, benzo(k)fluoranthène, benzo(a)pyrène, benzo(g, h, i)pérylène et indéno(1,2,3-cd)pyrène	μg/l	6,44	0,1573	0,1805	8,05	1
	Somme des composés suivants**: benzo(b)fluoranthène, benzo(k)fluoranthène, benzo(g, h, i)pérylène et indéno(1,2,3-cd)pyrène	μg/l	3,78	0,09	0,09	4,89	0,1
	Somme des HAP	μg/l	10	0,23	0,29	12	-
	PCB 28	μg/l	<0,01	< 0,01	<0,01	<0,01	-
	PCB 52	μg/l α/l	<0,01	<0,01	<0,01	<0,01	-
	PCB 101 PCB 118	μg/l μg/l	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	<0,01 <0,01	-
PCB	PCB 138	μg/1 μg/l	<0,01	<0,01	<0,01	<0,01	-
	PCB 153	μg/l	<0,01	<0,01	<0,01	< 0,01	-
	PCB 180	μg/l	<0,01	<0,01	<0,01	<0,01	-
	SOMME PCB (7)	μg/l	<0,01	<0,01	<0,01	<0,01	-
	Benzène	μg/l	<0,50	<0,50	<0,50	<0,50	-
DOTEST	Toluène Ethylhenzène	μg/l α/l	<1,00 <1,00	<1,00 <1,00	<1,00 <1,00	<1,00 <1,00	-
BTEX	Ethylbenzène o-Xylène	μg/l μg/l	<1,00	<1,00	<1,00	<1,00	-
	Vylène (méta-, para-)	μg/1 μg/l	<1,00	<1,00	<1,00	<1,00	-
	Dibutylétain cation (DBT)	-	<0,01	<0,01	0,04	<0,01	
		μg/l					-
	Tributylétain cation (TBT)	μg/l	<0,01	<0,01	<0,01	<0,01	-
	Monobutylétain cation (MBT)	μg/l	<0,01	<0,01	<0,01	<0,01	-
I	Escherichia coli (Eaux de loisirs)	NPP/100 ml	< 15	< 15	< 15	< 15	20000

Figure 12 : Résultats analytiques dans les eaux souterraines (juillet 2020)

La figure suivante est une cartographie des principaux résultats analytiques (supérieurs aux seuils de détection du laboratoire) obtenus sur les eaux souterraines :

	Paramètres	Unités	Pz 3
Ma	atières en suspension (MES)		80
	Chlonires	mg/l	253
	Sulfates (SO4)	116/1	1530
	ST-DCO		<50
Demande	e Biochimique en Oxygène (DBO5)	mg O2/1	<3,00
	rbone Organique Total (COT)	mg C/l	28
	Fluorures	mg/l	0,68
	Arsenic (As)	3	0,027
	Baryum (Ba)		0,049
Élément-	Chrome (Cr)		<0,005
trace	Cuivre (Cu)	mg/l	<0,01
métallique	Nickel (Ni)		0,006
	Piomb (Pb)		0,038
	Zinc (Zn)		<0,02
			<0,03
			<0,008
	Hydrocarbures totaux	mg/l	<0,008
			<0,008
	Pentra/alauri e # /##		<0,008
Samuel de	Benzo(a)pyrène*/** es composés suivants* : fluoranthène,		0,0305
The second second second second	s composes suivants* : Huoranthene, fluoranthène, benzo(k)fluoranthène,		
4.0	a)pyrène, benzo(g, h, i)pérylène et		0,1805
ochzo(a	indéno(1,2,3-cd)pyrène		
S	nme des composés suivants** :	μg/l	
	fluoranthène, benzo(k)fluoranthène,	,,,,	0,09
	i, i)pérylène et indéno(1,2,3-cd)pyrène		0,09
ochzo(g, n,			
	Somme des HAP		0,29
1	Dibutylétain cation (DBT)		0,04
	The state of the s		144
	Paramètres	Unités	Pz 4
Ma		Unités	
Ma	atières en suspension (MES)	A	1800
Ma	atières en suspension (MES) Chlorures	Unités mg/l	1800 410
Ma	atières en suspension (MES) Chlorures Sulfates (SO4)	mg/l	1800 410 245
	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO	A	1800 410
Demande	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5)	mg/l mg O2/l	1800 410 245 251
Demande	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) thone Organique Total (COT)	mg/l mg O2/l mg C/l	1800 410 245 251 4
Demande	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5)	mg/l mg O2/l	1800 410 245 251 4
Demande	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As)	mg/l mg O2/l mg C/l	1800 410 245 251 4 40
Demande	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures	mg/l mg O2/l mg C/l	1800 410 245 251 4 40 1
Demande Cart	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba)	mg/l mg O2/l mg C/l	1800 410 245 251 4 40 1 0,121 0,235
Demande Cart Élément-	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni)	mg/l mg O2/l mg C/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012
Demande Cart Élément- trace	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb)	mg/l mg O2/l mg C/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29
Demande Cart Élément- trace	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni)	mg/l mg O2/l mg C/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13
Demande Cart Élément- trace	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb)	mg/l mg O2/l mg C/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238
Demande Cart Élément- trace métallique	chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn)	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012
Demande Cart Élément- trace métallique	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb)	mg/l mg O2/l mg C/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,041
Demande Cart Élément- trace métallique	chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn)	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,012 0,013
Demande Cart Élément- trace métallique	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures totaux	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,041 0,113 0,071
Demande Cart Élément- trace métallique	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures totaux Benzo(a)pyrène*/**	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,012 0,013
Demande Cart Élément- trace métallique	atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures totaux Benzo(a)pyrène*/** es composés suivants*: fluoranthène,	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,041 0,113 0,071 1,96
Demande Cart Élément- trace métallique Somme des benzo(b)fl	Atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures totaux Benzo(a)pyrène*/** es composés suivants*: fluoranthène, fluoranthène, benzo(k)fluoranthène,	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,041 0,113 0,071
Demande Cart Élément- trace métallique Somme des benzo(b)fl	Atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures totaux Benzo(a)pyrène*/** es composés suivants*: fluoranthène, fluoranthène, benzo(k)fluoranthène, a)pyrène, benzo(g, h, i)pérylène et	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,041 0,113 0,071 1,96
Demande Cart Élément- trace métallique Somme des benzo(a)	Atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures totaux Benzo(a)pyrène*/** es composés suivants*: fluoranthène, fluoranthène, benzo(k)fluoranthène, a)pyrène, benzo(g, h, i)pérylène et indéno(1,2,3-cd)pyrène	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,041 0,113 0,071 1,96
Demande Cart Élément- trace métallique Somme des benzo(a) Somme	Atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures totaux Benzo(a)pyrène*/** es composés suivants*: fluoranthène, a)pyrène, benzo(g, h, i)pérylène et indéno(1,2,3-cd)pyrène me des composés suivants*:	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0.124 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,041 0,113 0,071 1,96
Demande Cart Élément- trace métallique Somme des benzo(b)fl benzo(a	Atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures totaux Benzo(a)pyrène*/** es composés suivants*: fluoranthène, a)pyrène, benzo(g, h, i)pérylène et indéno(1,2,3-cd)pyrène mme des composés suivants*: fluoranthène, benzo(k)fluoranthène, ame des composés suivants*: fluoranthène, benzo(k)fluoranthène,	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0,121 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,041 0,113 0,071 1,96
Demande Cart Élément- trace métallique Somme des benzo(b)fl benzo(a	Atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures totaux Benzo(a)pyrène*/** es composés suivants*: fluoranthène, fluoranthène, benzo(k)fluoranthène, a)pyrène, benzo(g, h, i)pérylène et indéno(1,2,3-cd)pyrène nme des composés suivants*: fluoranthène, to, i)pérylène et indéno(1,2,3-cd)pyrène	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0.124 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,041 0,113 0,071 1,96 8,05
Demande Cart Élément- trace métallique Somme des benzo(b)fl benzo(a Som benzo(g, h,	Atières en suspension (MES) Chlorures Sulfates (SO4) ST-DCO e Biochimique en Oxygène (DBO5) chone Organique Total (COT) Fluorures Arsenic (As) Baryum (Ba) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures totaux Benzo(a)pyrène*/** es composés suivants*: fluoranthène, a)pyrène, benzo(g, h, i)pérylène et indéno(1,2,3-cd)pyrène mme des composés suivants*: fluoranthène, benzo(k)fluoranthène, ame des composés suivants*: fluoranthène, benzo(k)fluoranthène,	mg/l mg O2/l mg C/l mg/l mg/l	1800 410 245 251 4 40 1 0.124 0,235 0,012 0,05 0,013 0,29 0,13 0,238 0,012 0,041 0,113 0,071 1,96

Figure 13 : Synthèse des résultats analytiques dans les eaux souterraines (juillet 2020)

Les résultats obtenus sur les eaux superficielles, à l'issue de la campagne de prélèvements de juillet 2020, sont reportés dans le tableau suivant :

Matières en suspension (MES) par filtration mg/1 30		Paramètres	Unités	ES					
Sulfates	Matières en si	uspension (MES) par filtration	mg/l	30					
Demande Chimique en Oxygène mg O2/1 <3,00				8130					
Demande Biochimique en Oxygène mg O2/1 <3,00 Carbone Organique Total (COT) mg C/1 24 Fluorues mg /1 1,2 Indice phénol μg/1 <10 Antimoine (Sb) mg /1 <0,002 Antenic (As) mg /1 <0,005 Baryum (Ba) mg /1 <0,005 Baryum (Ba) mg /1 <0,005 Chrome (Ct) mg /1 <0,005 Chrome (Ct) mg /1 <0,005 Chrome (Ct) mg /1 <0,005 Nickel (Ni) mg /1 <0,005 Plomb (Pb) mg /1 <0,005 Selénium (Se) mg /1 <0,005 Selénium (Se) mg /1 <0,001 Mecure (Hg) mg /1 <0,001 HCT (cnClo - nC16) (Calcul) mg /1 <0,003 HCT (cnClo - nC22) (Calcul) mg /1 <0,008 HCT (cnClo - nC16) (Calcul) mg /1 <0,008 HCT (cnClo - nC20) (Calcul) mg /1 <0,008 HCT (cnClo - nC20) (Calcul) mg /1 <0,008 HCT (cnClo - nC40) (Calcul) mg /1 <0,008 HCT (cnClo - nC40) (Calcul) mg /1 <0,001 Acénaphtène μg/1 <0,01 Acénaphtène μg/1 <0,01 Acénaphtène μg/1 <0,01 Phénanthrène μg/1 <0,01 Phénanthrène μg/1 <0,01 Phénanthrène μg/1 <0,01 Benzo(s) janthracène μg/1 <0,001 Dienzo(s) janthracène μg/1 <0,001 PCB 101 μg/1 <0,001 PCB 103 μg/1 <0,001			mg/l						
Carbone Organique Total (COT) Fluorures mg/1 1,2 Indice phenol µg/1 < 10 Antimoine (Sb) mg/1 < 0,002 Artsenic (As) mg/1 < 0,005 Baryum (Ba) mg/1 < 0,005 Chrome (Cr) mg/1 < 0,005 Chrome (Cr) mg/1 < 0,005 Cuivre (Cu) mg/1 < 0,005 Nickel (Ni) mg/1 < 0,005 Plomb (Pb) mg/1 < 0,005 Selénium (Se) mg/1 < 0,005 Selénium (Se) mg/1 < 0,005 Selénium (Se) mg/1 < 0,005 Plomb (Pb) mg/1 < 0,005 Selénium (Se) mg/1 < 0,005 Plomb (Pb) mg/1 < 0,005 Selénium (Se) mg/1 < 0,005 HCT (nC10 - nC10) (Calcul) mg/1 < 0,008 HCT (nC10 - nC10) (Calcul) mg/1 < 0,008 HCT (nC22 - nC30) (Calcul) mg/1 < 0,008 HCT (>nC30 - nC40) (Calcul) mg/1 < 0,008 HCT (>nC30 - nC40) (Calcul) mg/1 < 0,001 Fluorène µg/1 < 0,01 Fluorène µg/1 < 0,01 Fluorène µg/1 < 0,01 Phénanthrène µg/1 < 0,01 Fluorène µg/1 < 0,01 Phénanthrène µg/1 < 0,01 Fluorène µg/1 < 0,01 Phénanthrène µg/1 < 0,01 Prène µg/1 < 0,01 Benzo(a) anthracène µg/1 < 0,01 Benzo(a) prène µg/1 < 0,01 Benzo(a) prène µg/1 < 0,01 PCB 18 µg/1 < 0,01 PCB 19 PCB 19 µg/1 < 0,01 PCB									
Fluorures		1 30	_						
Indice phénol	Carbone								
Antimoine (Sb)									
Arsenic (As) mg/1 <0,005									
Baryum (Ba)									
Chrome (Cr)		` ′	_	0,018					
Cuivre (Cu) mg/1 <0,01 Molybdene (Mo) mg/1 <0,005 Nickel (Ni) mg/1 <0,005 Plomb (Pb) mg/1 <0,005 Sélénium (Se) mg/1 <0,001 Zinc (Zn) mg/1 <0,02 Mercure (Hg) µg/1 <0,02 HCT (nC10 - nC16) (Calcul) mg/1 <0,008 HCT (>nC10 - nC22) (Calcul) mg/1 <0,008 HCT (>nC30 - nC40) (Calcul) mg/1 <0,008 Acénaphthylène µg/1 <0,01 Acénaphthylène µg/1 <0,01 Phenanthène µg/1 <0,01 Phena		Cadmium (Cd)	mg/l	<0,005					
Molybdène (Mo) mg/1 <0,005 Nickel (Ni) mg/1 <0,005 Plomb (Pb) mg/1 <0,005 Selénium (Se) mg/1 <0,001 Zinc (Zn) mg/1 <0,001 Zinc (Zn) mg/1 <0,002 Mercure (Hg) µg/1 <0,02 Mercure (Hg) µg/1 <0,03 HCT (nC10 - nC16) (Calcul) mg/1 <0,008 HCT (nC10 - nC16) (Calcul) mg/1 <0,008 HCT (>nC22 - nC30) (Calcul) mg/1 <0,008 HCT (>nC30 - nC40) (Calcul) mg/1 <0,001 Acénaphtène µg/1 <0,01 Fluorène µg/1 <0,01 Fluorène µg/1 <0,01 Fluorène µg/1 <0,01 Fluoranthène µg/1 <0,01 Fluoranthène µg/1 <0,01 Gluorenthène Gluorenthène µg/1 <0,01 Gluorenthène Gluorenthène µg/1 <0,01 Gluorenthène Gluorenthè		Chrome (Cr)	mg/l	<0,005					
Nickel (Ni) mg/1 <0,005 Plomb (Pb) mg/1 <0,005 Selénium (Se) mg/1 <0,005 Zinc (Zn) mg/1 <0,020 Mercure (Hg) µg/1 <0,020 Indice Hydrocarbures (C10-C40) mg/1 <0,03 HCT (nC10 - nC16) (Calcul) mg/1 <0,008 HCT (nC16 - nC22) (Calcul) mg/1 <0,008 HCT (>nC30 - nC40) (Calcul) mg/1 <0,001 Acénaphthylène µg/1 <0,01 Fluorène µg/1 <0,01 Fluorène µg/1 <0,01 Fluorène µg/1 <0,01 Phénanthrène µg/1 <0,01 Anthracène µg/1 <0,01 Phénanthrène µg/1 <0,01 Chrysène µg/1 <0,01 Benzo (a) anthracène µg/1 <0,01 Benzo (b) fluoranthène µg/1 <0,01 Benzo (a) pyrène µg/1 <0,01 Benzo (b) pyrène µg/1 <0,01 Benzo (b) pyrène µg/1 <0,01 Benzo (b) pyrène µg/1 <0,01 PCB 101 µg/1 <0,01 PCB 102 µg/1 <0,01 PCB 103 µg/1 <0,01 PCB 104 µg/1 <0,01 PCB 105 µg/1 <0,01 PCB 106 µg/1 <0,01 PCB 107 µg/1 <0,01 PCB 108 µg/1 <0,01 PCB 109 µg/1 <0,01 PCB 109 µg/1 <0,01 PCB 100 µg/1 <0,01 PCB 100 µg/1 <0,01 PCB		Cuivre (Cu)	mg/l	<0,01					
Plomb (Pb) mg/1 <0,005 Selénium (Se) mg/1 <0,01 Zinc (Zn) mg/1 <0,01 <0,01 mg/1 <0,02 <0,02 mg/1 <0,02 <0,02 mg/1 <0,02 <0,02 mg/1 <0,02 <0,03 mg/1 <0,02 <0,03 mg/1 <0,03 mg/1 <0,008 mg/1 <0,001 mg/1									
Sélénium (Se) mg/1 <0,01 Zinc (Zn) mg/1 <0,02 Mercure (Hg) mg/1 <0,02 Mercure (Hg) mg/1 <0,03 Indice Hydrocarbures (C10-C40) mg/1 <0,03 HCT (mC10 - nC19) (Calcul) mg/1 <0,008 HCT (>nC22 - nC30) (Calcul) mg/1 <0,008 HCT (>nC30 - nC40) (Calcul) mg/1 <0,001 Acénaphthylène mg/1 <0,01 Acénaphtène mg/1 <0,01 Fluorène mg/1 <0,01 Fluorène mg/1 <0,01 Anthracène mg/1 <0,01 Anthracène mg/1 <0,01 Anthracène mg/1 <0,01 Chrysène mg/1 <0,01 Benzo (a)-anthracène mg/1 <0,01 Benzo (b)fluoranthène mg/1 <0,01 Benzo (h)fluoranthène mg/1 <0,01 PCB 18 mg/1 <0,01 PCB 19 mg/1 <0,01 Dibutylétain cation (DBT) / LSG9B mg/1 <0,01 Monobutylétain cation (MBT) / LSG9B mg/1 <0,01			_						
Tindice Hydrocarbures C10-C40 mg/l <0,02 Mercure (Hg) mg/l <0,03 C10-C40 mg/l <0,03 Mercure (Hg) mg/l <0,03 Mercure (Hg) mg/l <0,03 Mercure (Hydrocarbures (C10-C40) mg/l <0,008 HCT (nC10-nC16) (Calcul) mg/l <0,008 HCT (>nC66-nC22) (Calcul) mg/l <0,008 HCT (>nC30-nC40) (Calcul) mg/l <0,008 HCT (>nC30-nC40) (Calcul) mg/l <0,008 HCT (>nC30-nC40) (Calcul) mg/l <0,008 Mercure mg/l <0,01 Mercure		· /							
Indice Hydrocarbures C10-C40 mg/1 <0,03 Indice Hydrocarbures C10-C40 mg/1 <0,03 HCT (nC10 - nC16) (Calcul) mg/1 <0,008 HCT (>nC22 - nC30) (Calcul) mg/1 <0,008 HCT (>nC22 - nC30) (Calcul) mg/1 <0,008 HCT (>nC20 - nC40) (Calcul) mg/1 <0,008 HCT (>nC30 - nC40) (Calcul) mg/1 <0,008 HCT (>nC30 - nC40) (Calcul) mg/1 <0,001 Acénaphthylène µg/1 <0,01 Acénaphthne µg/1 <0,01 Fluorène µg/1 <0,01 Fluorène µg/1 <0,01 Anthracène µg/1 <0,01 Senzo(4) -anthracène µg/1 <0,01 Benzo(5) (Huoranthène µg/1 <0,01 Benzo(6) (Huoranthène µg/1 <0,01 Benzo(6) (Huoranthène µg/1 <0,01 Benzo(6) (Huoranthène µg/1 <0,01 Benzo(6) (Huoranthène µg/1 <0,00 Benzo(6) (Huoranthène µg/1 <0,00 Benzo(6) (Huoranthène µg/1 <0,00 Benzo(6) (Huoranthène µg/1 <0,01 Benzo(6) (Huoranthène µg/1		` ′		•					
Indice Hydrocarbures C10-C40 mg / 1 <0,030 HCT (nC10 - nC16) (Calcul) mg / 1 <0,008 HCT (nC16 - nC22) (Calcul) mg / 1 <0,008 HCT (>nC22 - nC30) (Calcul) mg / 1 <0,008 HCT (>nC30 - nC40) (Calcul) mg / 1 <0,008 HCT (>nC30 - nC40) (Calcul) mg / 1 <0,008 HCT (>nC30 - nC40) (Calcul) mg / 1 <0,008 Acénaphthylène µg / 1 <0,01 Acénaphtène µg / 1 <0,01 Fluorène µg / 1 <0,01 Fluorène µg / 1 <0,01 Phénanthrène µg / 1 <0,01 Anthracène µg / 1 <0,01 Anthracène µg / 1 <0,01 Anthracène µg / 1 <0,01 Polycycliques Pyrène µg / 1 <0,01 Benzo (a) - anthracène µg / 1 <0,01 Benzo (b) fluoranthène µg / 1 <0,01 Benzo (b) fluoranthène µg / 1 <0,01 Benzo (b) fluoranthène µg / 1 <0,01 Benzo (a) pyrène µg / 1 <0,01 PCB 18 µg / 1 <0,01 Benzène µg / 1 <			_						
Indice			μg/1						
HCT (nC10 - nC16) (Calcul) mg/l <0,008 HCT (nC16 - nC22) (Calcul) mg/l <0,008 HCT (nC22 - nC30) (Calcul) mg/l <0,008 HCT (nC30 - nC40) (Calcul) mg/l <0,008 HCT (nC30 - nC40) (Calcul) mg/l <0,001 HCT (nC30 - nC40) (Calcul) mg/l <0,001 Acénaphthylène µg/l <0,01 Acénaphtène µg/l <0,01 Fluorène µg/l <0,01 Phénanthrène µg/l <0,01 Phénanthrène µg/l <0,01 Phénanthrène µg/l <0,01 Phénanthrène µg/l <0,01 Pyrène µg/l <0,01 Chrysène µg/l <0,01 Benzo(a)-anthracène µg/l <0,01 Benzo(b)-fluoranthène µg/l <0,01 Benzo(a)-pyrène µg/l <0,01 Benzo(a)-pyrène µg/l <0,01 Benzo(a)-pyrène µg/l <0,01 Benzo(ghi)-Pérylène µg/l <0,01 Benzo(ghi)-Pérylène µg/l <0,01 Benzo(ghi)-Pérylène µg/l <0,01 PCB 18 µg/l <0,01 PCB 19 PCB 18 µg/l <0,01 PCB 19 PCB 18 µg/l <0,01 PCB 19 PCB 18 µg/l <0,01 PCB 18		Indice Hydrocarbures (C10-C40)	mg/l	<0,03					
C10-C40 HCT (>nC16 - nC22) (Calcul) mg/l <0,008 HCT (>nC30 - nC40) (Calcul) mg/l <0,008 HCT (>nC30 - nC40) (Calcul) mg/l <0,008 Naphtalène µg/l <0,01 Acénaphthylène µg/l <0,01 Acénaphtène µg/l <0,01 Fluorène µg/l <0,01 Phénanthrène µg/l <0,01 Phénanthrène µg/l <0,01 Anthracène µg/l <0,01 Chrysène µg/l <0,01 Benzo(a)-anthracène µg/l <0,01 Benzo(b)fluoranthène µg/l <0,01 Benzo(b)fluoranthène µg/l <0,01 Benzo(a)pyrène µg/l <0,01 PCB 28 µg/l <0,01 PCB 28 µg/l <0,01 PCB 18 µg/l <0,01 Dibutylétain cation (DBT) / LSG9B µg/l <0,01 Monobutylétain cation (MBT) / LSG9B µg/l <0,01		HCT (nC10 - nC16) (Calcul)	mg/l	<0,008					
HCT (>nC22 - nC30) (Calcul) mg/l <0,008 HCT (>nC30 - nC40) (Calcul) mg/l <0,008 Naphtalène µg/l <0,01 Acénaphthylène µg/l <0,01 Acénaphtène µg/l <0,01 Fluorène µg/l <0,01 Phénanthrène µg/l <0,01 Anthracène µg/l <0,01 Chrysène µg/l <0,01 Benzo(a)-anthracène µg/l <0,01 Benzo(k)fluoranthène µg/l <0,01 Benzo(k)fluoranthène µg/l <0,01 Benzo(k)fluoranthène µg/l <0,001 Benzo(a)pyrène µg/l <0,01 PCB 28 µg/l <0,01 PCB 28 µg/l <0,01 PCB 18 µg/l <0,01 Benzène µg/l <0,01 Benzène µg/l <0,00 SOMME PCB (7) µg/l <0,01 Benzène µg/l <0,00 Benzène µg/l <0,00 Toluène µg/l <1,00 Xylène (méta-, para-) µg/l <1,00 Dibutylétain cation (DBT) / LSG9B µg/l <0,01		HCT (>nC16 - nC22) (Calcul)	mg/l	<0,008					
Naphtalène µg/l <0,01	(010-040)		mg/l						
Acénaphthylène		HCT (>nC30 - nC40) (Calcul)	mg/l	<0,008					
Acénaphtène		Naphtalène	μg/l	<0,01					
Fluorène		Acénaph thylène	μg/l	<0,01					
Phénanthrène		Acéna phtène	μg/l	<0,01					
Hydrocarbures		Fluorène	μg/l	<0,01					
Hydrocarbures			μg/l						
Polycycliques Pyrène μg/1 <0,01	** .								
Polycycliques Benzo-(a)-anthracène μg/1 <0,01			-						
Chrysène									
Benzo(b)fluoranthène μg/1 <0,01	1 olycycuques			-					
Benzo(k)fluoranthène μg/1 <0,01 Benzo(a)pyrène μg/1 <0,0075 Dibenzo(a,h)anthracène μg/1 <0,01 Benzo(ghi)Pérylène μg/1 <0,01 Indeno (1,2,3-cd) Pyrène μg/1 <0,01 Somme des HAP μg/1 <0,01 Somme des HAP μg/1 <0,05 PCB 28 μg/1 <0,01 PCB 52 μg/1 <0,01 PCB 101 μg/1 <0,01 PCB 118 μg/1 <0,01 PCB 138 μg/1 <0,01 PCB 153 μg/1 <0,01 PCB 150 μg/1 <0,01 PCB 180 μg/1 <0,01 PCB 180 μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 Benzène μg/1 <1,00 Toluène μg/1 <1,00 Sylène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Dibutylétain cation (DBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01 Color LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01 Color LSG9B μg/1									
Dibenzo(a,h)anthracène μg/1 <0,01 Benzo(ghi)Pérylène μg/1 <0,01 Indeno (1,2,3-cd) Pyrène μg/1 <0,01 Somme des HAP μg/1 <0,01 PCB 28 μg/1 <0,01 PCB 101 μg/1 <0,01 PCB 118 μg/1 <0,01 PCB 118 μg/1 <0,01 PCB 153 μg/1 <0,01 PCB 155 μg/1 <0,01 PCB 150 μg/1 <0,01 PCB 180 μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 Benzène μg/1 <0,50 Toluène μg/1 <1,00 SToluène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Dibutylétain cation (DBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01 Color Color μg/1 <0,01 Color LSG9B μg/1		· · ·		<0,01					
Benzo(ghi)Pérylène μg/1 <0,01 Indeno (1,2,3-cd) Pyrène μg/1 <0,01 Somme des HAP μg/1 0,025 PCB 28 μg/1 <0,01 PCB 52 μg/1 <0,01 PCB 101 μg/1 <0,01 PCB 118 μg/1 <0,01 PCB 138 μg/1 <0,01 PCB 153 μg/1 <0,01 PCB 150 μg/1 <0,01 PCB 180 μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 Benzène μg/1 <0,50 Toluène μg/1 <1,00 Ethylbenzène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Dibutylétain cation (DBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01		Benzo(a)pyrène	μg/l	<0,0075					
Indeno (1,2,3-cd) Pyrène μg/1 <0,01 Somme des HAP μg/1 0,025 PCB 28 μg/1 <0,01 PCB 52 μg/1 <0,01 PCB 101 μg/1 <0,01 PCB 118 μg/1 <0,01 PCB 138 μg/1 <0,01 PCB 153 μg/1 <0,01 PCB 150 μg/1 <0,01 PCB 180 μg/1 <0,01 PCB 180 μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 Benzène μg/1 <0,50 Toluène μg/1 <1,00 Ethylbenzène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Dibutylétain cation (DBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01		Dibenzo(a,h) anthracène	μg/l	<0,01					
Somme des HAP									
PCB 28 μg/1 <0,01 PCB 52 μg/1 <0,01 PCB 101 μg/1 <0,01 PCB 118 μg/1 <0,01 PCB 118 μg/1 <0,01 PCB 138 μg/1 <0,01 PCB 153 μg/1 <0,01 PCB 150 μg/1 <0,01 PCB 180 μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 Benzène μg/1 <0,01 Benzène μg/1 <0,50 Toluène μg/1 <1,00 Ethylbenzène μg/1 <1,00 O-Xylène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Dibutylétain cation (DBT) / LSG9B μg/1 <0,01 Tributylétain cation (TBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01			_						
PCB 52 μg/l <0,01 PCB 101 μg/l <0,01 PCB 118 μg/l <0,01 PCB 118 μg/l <0,01 PCB 138 μg/l <0,01 PCB 153 μg/l <0,01 PCB 153 μg/l <0,01 PCB 180 μg/l <0,01 SOMME PCB (7) μg/l <0,01 Benzène μg/l <0,01 Benzène μg/l <0,50 Toluène μg/l <1,00 Ethylbenzène μg/l <1,00 ο-Xylène μg/l <1,00 Xylène (méta-, para-) μg/l <1,00 Dibutylétain cation (DBT) / LSG9B μg/l <0,01 Tributylétain cation (MBT) / LSG9B μg/l <0,01 Monobutylétain cation (MBT) / LSG9B μg/l <0,01									
PCB 101 μg/l <0,01 PCB 118 μg/l <0,01 PCB 118 μg/l <0,01 PCB 138 μg/l <0,01 PCB 153 μg/l <0,01 PCB 153 μg/l <0,01 PCB 180 μg/l <0,01 SOMME PCB (7) μg/l <0,01 Benzène μg/l <0,01 Toluène μg/l <1,00 Ethylbenzène μg/l <1,00 ο-Xylène μg/l <1,00 Xylène (méta-, para-) μg/l <1,00 Dibutylétain cation (DBT) / LSG9B μg/l <0,01 Tributylétain cation (MBT) / LSG9B μg/l <0,01 Monobutylétain cation (MBT) / LSG9B μg/l <0,01									
PCB PCB 118 μg/1 <0,01 PCB 138 μg/1 <0,01 PCB 138 μg/1 <0,01 PCB 153 μg/1 <0,01 PCB 180 μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 Benzène μg/1 <0,50 Toluène μg/1 <1,00 Ethylbenzène μg/1 <1,00 ο-Xylène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Dibutylétain cation (DBT) / LSG9B μg/1 <0,01 Tributylétain cation (MBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01									
PCB PCB 138 μg/1 <0,01 PCB 153 μg/1 <0,01 PCB 153 μg/1 <0,01 PCB 180 μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 Benzène μg/1 <0,50 Toluène μg/1 <1,00 Ethylbenzène μg/1 <1,00 ο-Xylène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Συμεντικές μg/1 <1,00 Dibutylétain cation (DBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01	n an		-						
PCB 153 μg/1 <0,01 PCB 180 μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 Benzène μg/1 <0,50 Toluène μg/1 <1,00 Ethylbenzène μg/1 <1,00 O-Xylène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Tributylétain cation (DBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01 Color Color μg/1 Color Color LSG9B μg/1 <0,01 Color L	PCB		_						
PCB 180 μg/1 <0,01 SOMME PCB (7) μg/1 <0,01 Benzène μg/1 <0,50 Toluène μg/1 <1,00 Ethylbenzène μg/1 <1,00 ο-Xylène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Tributylétain cation (DBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01 Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Co									
Benzène μg/1 <0,50 Toluène μg/1 <1,00 Ethylbenzène μg/1 <1,00 O-Xylène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Dibutylétain cation (DBT) / LSG9B μg/1 <0,01 Tributylétain cation (TBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01		PCB 180		<0,01					
Toluène μg/1 <1,00 Ethylbenzène μg/1 <1,00 O-Xylène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Dibutylétain cation (DBT) / LSG9B μg/1 <0,01 Tributylétain cation (TBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01 Colorador LSG9B μg/1 <0									
Ethylbenzène μg/1 <1,00 ο-Xylène μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Xylène (méta-, para-) μg/1 <1,00 Dibutylétain cation (DBT) / LSG9B μg/1 <0,01 Tributylétain cation (TBT) / LSG9B μg/1 <0,01 Monobutylétain cation (MBT) / LSG9B μg/1 <0,01									
O-Xylène μg/l <1,00 Xylène (méta-, para-) μg/l <1,00 Dibutylétain cation (DBT) / LSG9B μg/l <0,01 Tributylétain cation (TBT) / LSG9B μg/l <0,01 Monobutylétain cation (MBT) / LSG9B μg/l <0,01			-						
Xylène (méta-, para-) μg/l <1,00	BTEX								
Tributylétain cation (TBT) / LSG9B									
Tributylétain cation (TBT) / LSG9B μg/1 <0,01	Dibutyléta	ain cation (DBT) / LSG9B	μg/l	<0,01					
Monobutylétain cation (MBT) / LSG9B μg/l <0,01									
Escherichia coli (Eaux de loisirs) NPP /100 ml <15		, ,		<0,01					
	E. deni	chia coli (Eaux de loisirs)		<15					

Figure 14 : Résultats analytiques dans les eaux superficielles (juillet 2020)

3) Constater l'étanchéité du site de décantation

La déposante n'est pas étanche et toutes les parties l'ont reconnu lors de la réunion du 2 juillet 2020. La déposante est creusée dans les sédiments du Bassin d'Arcachon.

A ce propos, Monsieur Olivier PAIRAULT, Responsable de l'Unité Départementale de la DREAL Gironde, a expliqué que le site bénéficiait du régime de l'antériorité et que de ce fait, l'administration ne pouvait pas exiger de l'exploitant une imperméabilisation.

Les nouvelles installations relevant de la même rubrique, à savoir la 2716, doivent être imperméables.

Par rapport au chef de mission de l'ordonnance du 15 juin relatif à ce point, j'ai demandé aux parties si elles souhaitaient que je réalise ou non un test de perméabilité. L'ensemble des parties a convenu que cela n'était pas nécessaire.

Figure 15 : Vue sur le bassin principal creusé dans les sédiments.

Port de la Teste de Buch et chenal de la Canelette

Pour faciliter la lecture du rapport, les données relatives aux prélèvements des 23 et 24 novembre 2020 sont données en Annexe V. Les prélèvements ont été effectués sous ma supervision par Thomas Lamotte et Renaud Chapuis (Expert judiciaire) de la société TEREO.

1) Localisation et profondeurs des prélèvements

Comme convenu lors de la réunion du 2 juillet 2020, nous avons effectué douze prélèvements dont quatre dans le chenal de la Canelette (C1 à C4) et huit dans le port (C5 à C12). La figure ci-dessous présente la localisation des prélèvements.

Figure 16: Localisation des carottages (24 et 25 nov. 2020)

Suite à la demande de la mairie de Gujan-Mestras, nous avons prévu de réaliser les prélèvements à une profondeur supérieure à 1 mètre (profondeur des prélèvements de l'étude diligentée par le SMPBA).

Les caractéristiques techniques des carottages sont présentées dans la figure suivante :

Carot	taga	Géoréfér	encement	Profondeur de	Date de	Heure de	Observations
Carot	tage	X	Y	carottage (m)	prélèvements	prélèvements	Observations
	C1	372014	6403406	1,5	23/11/2020	10:45	
Chenal de	C2	371827	6403287	1,5	23/11/2020	11:40	
la Canelette	C3	371515	6403087	1,5	23/11/2020	12:10	
	C4	371365	6402781	1	23/11/2020	12:45	refus à 1m
	C5	371356	6402617	1	23/11/2020	13:05	refus à 1m
	C6	371398	6402449	1,4	23/11/2020	13:35	refus à 1,4m
Port de la	C 7	371435	6402286	1	24/11/2020	12:05	refus à 1m
Teste-de-	C8	371471	6402091	1	24/11/2020	12:45	refus à 1m
Buch	C9	371441	6401939	1,5	24/11/2020	13:15	
Buen	C10	371338	6402001	1,5	24/11/2020	13:50	
	C11	371329	6402132	1,3	24/11/2020	11:30	refus à 1,3m
	C12	371348	6402371	1,2	24/11/2020	11:00	refus à 1,2m

Figure 17 : Caractéristiques techniques des carottages et géoréférencement

Dans le chenal et le port on trouve parfois au fond des amas de coquilles et/ou des blocs compacts (béton ou autres matériaux). La mention « refus » indiquée dans le tableau ci-dessus correspond à un carottage rencontrant ce type d'obstacle.

Seul quatre carottages ont été stoppés à la profondeur de 1 mètre.

2) Caractérisation des sédiments

Trois approches complémentaires sont proposées afin d'étudier le degré de contamination des sédiments :

une comparaison « aux niveaux à prendre en compte lors d'une analyse de rejets dans les eaux de surface ou de sédiments marins, estuariens ou extraits de cours d'eau ou canaux relevant respectivement des rubriques 2.2.3.0, 4.1.3.0 et 3.2.1.0 de la nomenclature annexée à l'article R. 214-1 du code de l'environnement » - arrêté du 9 août 2006.

Plus spécifiquement, concernant les sédiments marins et estuariens, l'arrêté propose deux niveaux de comparaison : N1 et N2. Comme précisé par le groupe GEODE (Groupe d'Etudes et d'Observation sur les Dragages et l'Environnement) ces niveaux ne sont pas des seuils visant à autoriser ou à interdire de fait l'immersion de sédiments. Ils constituent des points de repère permettant à la fois de statuer sur le régime administratif de l'opération (déclaration ou autorisation) et d'apprécier l'incidence que peut avoir l'opération projetée, et donc d'orienter une opération soit vers l'immersion de sédiments, soit vers leur gestion à terre.

- o au-dessous du niveau N1, l'impact potentiel est en principe jugé d'emblée neutre ou négligeable, les teneurs étant « normales » ou comparables au bruit de fond environnemental ;
- o entre le niveau N1 et le niveau N2, une investigation complémentaire peut s'avérer nécessaire en fonction du projet considéré et du degré de dépassement du niveau N1 ;
- o au-delà du niveau N2, une investigation complémentaire est généralement nécessaire car des indices notables laissent présager un impact potentiel négatif de l'opération.

- une détermination du caractère dangereux ou non des sédiments qui sortent du milieu aquatique.
- une comparaison aux seuils définis dans l'arrêté du 12 décembre 2014 précisant les modalités d'acceptation des déchets dans les Installations de Stockages de Déchets Inertes.

Dès l'instant où les sédiments sortent du milieu aquatique pour une gestion à terre du matériau, ils adoptent le statut de déchet. A ce titre, les sédiments doivent être caractérisés au regard du référentiel déchet, ce qui comprend l'analyse de leur caractère inerte ou non (au regard de l'arrête du 12 décembre 2014), ainsi que la détermination de leur caractère dangereux (analyse HP14).

3) Présentation des résultats de la campagne de novembre 2020

Pour permettre de comparer les résultats de la campagne de novembre 2020 avec celle réalisée pour le SMPBA en juin 2018, dans la mesure des données disponibles, nous avons regroupé les deux séries dans les tableaux suivants.

Quand nous disposons des données pour présenter une comparaison, pour améliorer la lisibilité, nous distinguerons les données du chenal (C1 à C4) et celles du port (C5 à C12).

Les résultats du laboratoire des 12 échantillons (C1 à C 12) sont donnés en Annexe VII.

3.1 Présentation des résultats selon l'arrêté du 9 aout 2006

Les résultats analytiques présentés dans les tableaux suivants respectent le code couleur suivant :

- non surligné pour les teneurs qui sont inférieures aux seuils N1 et N2,
- surligné en jaune, pour les paramètres supérieurs aux seuils N1 mais inférieurs aux seuils N2,
- surligné en orange, pour les teneurs supérieures aux seuils N2.

3.1.1 Le Chenal

			Ex	pertise	nov. 20	20		Etude jı	iin 2018			
P	aramètres	Unités	C 1	C 2	C 3	C 4	ECAM	ECBM	ECCM	ECDM	N1	N2
M:	atière sèche	% P.B.	70	36,9	47,2	48,9	40,6	54,4	56,4	77,8	/	/
A	rsenic (As)		16,9	26,8	44,7	22,2	23,9	18,3	13,2	6,77	25	50
Ca	dmium (Cd)		0,21	0,47	1,72	0,31	0,40	0,43	0,30	< 0,1	1,2	2,4
C	hrome (Cr)		27,7	41,5	29,4	32,1	36,9	28,1	20,5	11,1	90	180
C	Cuivre (Cu)		21,9	32,6	27,4	40,2	34,7	32,9	14,1	8,48	45	90
	ercure (Hg)		0,18	0,31	0,29	0,22	0,23	0,22	0,12	0,06	0,4	0,8
N	lickel (Ni)		14,5	21,7	18,3	17,8	19,1	15,2	10,9	6,19	37	74
	lomb (Pb)		36,9	53,7	117	50,3	41,9	36,8	25,2	12,9	100	200
	Zinc (Zn)		113	145	170	139	156	123	104	44,7	276	552
	PCB 28		<0,001	<0,001	<0,001	<0,001	<0,005	<0,005	<0,005	<0,005	0,01	0,01
	PCB 52		<0,001	<0,001	<0,001	<0,001	<0,005	<0,005	<0,005	<0,005	0,01	0,01
РСВ	PCB 101		0,0011	<0,001	0,0015	<0,001	<0,01	<0,01	<0,01	<0,01	0,01	0,02
100	PCB 118		0,0015	<0,001	0,0021	<0,001	<0,01	<0,01	<0,01	<0,01	0,01	0,02
	PCB 138		0,0023	0,0012	0,0032	0,0013	<0,01	<0,01	<0,01	<0,01	0,02	0,04
	PCB 153		0,002	0,0015	0,0032	0,0016	<0,01	<0,01	<0,01	<0,01	0,02	0,04
	PCB 180	mg/kg M.S.	<0,001	<0,001	0,0012	<0,001	<0,01	<0,01	<0,01	<0,01	0,01	0,02
	Naphtalène		0,003	0,0094	0,011	0,025	<0,01	<0,01	0,026	<0,01	0,16	1,13
	Acénaphtène		0,013	0,0082	0,0083	0,054	0,02	<0,01	<0,01	<0,01	0,02	0,26
	Acénaphthylène		0,04	0,034	0,076	0,16	0,046	0,013	0,05	0,032	0,04	0,34
	Fluorène		0,019	0,017	0,025	0,11	0,04	<0,01	0,03	0,01	0,02	0,28
	Anthracène		0,046	0,036	0,074	0,32	0,1	0,02	0,14	0,07	0,09	0,59
	Phénanthrène		0,16	0,12	0,3	1	0,39	0,06	0,33	0,19	0,24	0,87
	Fluoranthène		0,68	0,35	1,5	3,7	0,88	0,17	0,81	0,59	0,6	2,85
Hydrocarbures	Pyrène		0,5	0,27	1,3	2,7	0,7	0,14	0,79	0,51	0,5	1,5
Aromatiques	Benzo-(a)-anthracène		0,3	0,22	0,59	1,3	0,54	0,12	0,54	0,33	0,26	0,93
Polycycliques	Chrysène		0,3	0,18	0,66	1,3	0,5	0,11	0,49	0,28	0,38	1,59
J J 1	Benzo(b)fluoranthène		0,47	0,43	1,1	1,9	0,85	0,21	0,81	0,54	0,4	0,9
	Benzo(k)fluoranthène		0,29	0,19	0,36	0,92	0,35	0,09	0,36	0,22	0,2	0,4
	Benzo(a)pyrène		0,39	0,33	0,82	1,5	0,6	0,15	0,67	0,42	0,43	1,02
	Dibenzo(a,h)anthracène		0,062	0,1	0,15	0,28	0,09	0,02	0,07	0,05	0,06	0,16
	Benzo(ghi)Pérylène		0,3	0,25	0,77	1,1	0,33	0,09	0,36	0,24	1,7	5,65
	Indeno (1,2,3-cd) Pyrène		0,33	0,22	0,81	1,2	0,41	0,1	0,44	0,28	1,7	5,65
Tributyléta	ain cation-Sn (TBT)	μg Sn/kg M.S.	2,4	5,3	9,9	8,4					100	400

Figure 18 : Présentation des résultats analytiques obtenus dans les sédiments du Chenal selon l'arrêté du 09/08/2006

3.1.2 Le Port

Les résultats analytiques présentés dans les tableaux suivants respectent le code couleur suivant :

- non surligné pour les teneurs qui sont inférieures aux seuils N1 et N2,
- surligné en jaune, pour les paramètres supérieurs aux seuils N1 mais inférieurs aux seuils N2,
- surligné en orange, pour les teneurs supérieures aux seuils N2.

					E	xpertise	nov. 202	20						Etude j	uin 2018						
I	Paramètres	Unités	C 5	C 6	C 7	C 8	C 9	C 10	C 11	C 12	EPLT1	EPLT2	EPLT3	EPLT4	EPLT5	EPLT6	EPLT7	EPLT8	N1	N2	
M	atière sèche	% P.B.	67,9	55,7	43	32,5	36	35,3	43,5	42,9	35,5	40,3	51,7	41,2	42,1	53,8	50,7	31,8	/	/	
A	arsenic (As)		14,4	27,7	33,5	35,9	34,6	30,3	22,5	31	30,8	35,8	18,2	25	23,6	17,5	24,4	27,3	25	50	
Ca	dmium (Cd)		0,2	0,67	0,53	0,64	0,87	0,88	0,54	0,8	0,65	0,75	0,38	0,57	0,45	0,38	0,31	0,64	1,2	2,4	
C	chrome (Cr)		21,6	38,7	39,4	39,8	36,8	39	30,1	38,8	46,8	45,6	23,6	41,8	36,8	24,7	27,1	44,1	90	180	
(Cuivre (Cu)		42,6	57,2	91,5	71,1	60,8	98,8	66,4	90,4	126	63,7	31,5	53,4	61,1	66,9	27,3	54,5	45	90	
	ercure (Hg)		0,12	0,34	0,34	0,23	0,71	0,46	0,31	0,43	0,3	0,0372	0,154	0,269	0,225	0,211	1,7	0,277	0,4	0,8	
	Nickel (Ni)		11,1	20,8	26,3	23,1	20,1	22,4	17,2	26,4	23,9	24,4	13	22,2	19,4	13,8	14,2	22,5	37	74	
	Plomb (Pb)		36,9	73,2	74,3	64,9	86,8	107	66,2	76,9	64,9	76,2	36,2	56,4	55,4	44,6	43,9	55,8	100	200	
	Zinc (Zn)		105	192	220	236	280	271	189	227	254	263	120	201	194	172	171	223	276	552	
	PCB 28		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,01	0,01	
	PCB 52		<0,001	0,001	<0,001	0,001	0,003	0,002	0,002	0,001	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,01	0,01	
РСВ	PCB 101		0,001	0,002	0,002	0,002	0,003	0,005	0,003	0,001	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,01	0,02	
I CD	PCB 118		0,002	0,002	0,002	0,001	0,003	0,004	0,003	0,002	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,01	0,02	
	PCB 138		0,003	0,005	0,003	0,002	0,006	0,006	0,004	0,003	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,02	0,04	
	PCB 153		0,003	0,005	0,003	0,002	0,007	0,006	0,005	0,003	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,02	0,04	
	PCB 180		ma/ka M S	<0,001	0,002	<0,001	<0,001	0,002	0,002	0,001	<0,001	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,01	0,02
	Naphtalène	mg/kg M.S.	шу/ ку м.з.	0,01	0,024	0,056	0,06	0,025	0,084	0,02	0,068	0,031	0,033	0,023	0,019	<0,01	0,022	0,036	<0,01	0,16	1,13
	Acénaphtène		0,031	0,034	0,043	0,1	0,028	0,26	0,042	0,091	0,041	0,031	0,029	0,026	<0,01	0,018	0,011	0,011	0,02	0,26	
	Acénaphthylène		0,066	0,11	0,12	0,32	0,19	0,53	0,28	0,21	0,095	0,095	0,066	0,096	0,024	0,068	0,079	0,015	0,04	0,34	
	Fluorène		0,047	0,073	0,084	0,14	0,06	0,35	0,1	0,19	0,045	0,044	0,033	0,067	0,014	0,034	0,025	0,013	0,02	0,28	
	Anthracène		0,1	0,14	0,22	0,42	0,17	0,69	0,29	0,39	0,131	0,149	0,112	0,152	0,042	0,142	0,093	0,030	0,09	0,59	
	Phénanthrène		0,35	0,6	0,77	1,5	0,87	2,4	1,4	1,6	0,383	0,447	0,327	0,482	0,141	0,290	0,316	0,085	0,24	0,87	
	Fluoranthène		0,99	1,5	2,3	3,6	4,9	4,9	5,5	3,7	0,961	1,077	0,882	0,940	0,325	0,888	0,909	0,243	0,6	2,85	
Hydrocarbures	Pyrène		0,7	1,1	1,6	2,7	3,7	3,6	4	2,5	0,769	0,876	0,895	0,688	0,290	0,736	0,894	0,195	0,5	1,5	
Aromatiques	Benzo-(a)-anthracène		0,53	0,69	0,89	2,3	1,6	4,1	1,8	1,5	0,609	0,679	0,787	0,592	0,262	0,642	0,616	0,166	0,26	0,93	
Polycycliques	Chrysène		0,46	0,65	0,8	1,9	1,9	3,4	1,9	1,6	0,597	0,713	0,673	0,578	0,219	0,551	0,573	0,151	0,38	1,59	
- J - J 1	Benzo(b)fluoranthène		0,87	1,2	1,5	3,1	3,1	4,7	2,9	2,5	1,161	1,108	0,894	1,158	0,322	0,901	0,856	0,278	0,4	0,9	
	Benzo(k)fluoranthène		0,18	0,27	0,4	1,4	1	1,6	1,2	0,67	0,46	0,533	0,482	0,456	0,143	0,387	0,509	0,114	0,2	0,4	
	Benzo(a)pyrène		0,68	1	1,1	2,4	1,9	4,8	2,3	1,8	0,749	0,894	0,750	0,755	0,207	0,628	0,891	0,187	0,43	1,02	
	Dibenzo(a,h)anthracène		0,26	0,37	0,49	0,54	0,46	1,6	0,4	0,81	0,152	0,159	0,076	0,148	0,031	0,121	0,116	0,025	0,06	0,16	
	Benzo(ghi)Pérylène		0,53	0,72	0,85	1,9	1,9	3,2	1,6	1,3	0,401	0,476	0,526	0,380	0,136	0,327	0,534	0,099	1,7	5,65	
	Indeno (1,2,3-cd) Pyrène		0,44	0,67	0,74	1,8	2,2	4	1,9	1,3	0,486	0,561	0,596	0,513	0,156	0,373	0,622	0,123	1,7	5,65	
Tributylét	ain cation-Sn (TBT)	μg Sn/kg M.S.	16	24	14	6,9	6,6	34	52	18	<10	<10	16	19	<10	10,2	<10	28,6	100	400	

Figure 19 : Présentation des résultats analytiques obtenus dans les sédiments du Port selon l'arrêté du 09/08/2006

3.2 Présentation des résultats de dangerosité

3.2.1 *Le Chenal*

Sédiment	Classement sur la base des essais de toxicité aiguë	Classement sur la base des essais de toxicité chronique	Classement sur la base des essais de toxicité terestre	Sytnhèse
Composite Chenal "20E217149-013"	-	-	-	-

^{+ «} ombré » : classé comme dangereux pour l'environnement - : classé comme non dangereux pour l'environnement

Figure 20 : Evaluation de la dangerosité de l'échantillon composite Chenal

L'interprétation du laboratoire EUROFINS à l'issue de l'analyse de dangerosité est rappelée cidessous (cf. bordereau analytique du laboratoire en Annexe VIII) :

- Pour le test de toxicité aiguë, réalisé sur éluat avec un seuil de CE 50 à 10 % : L'échantillon « 20E217149-013 » n'est pas considéré comme écotoxique par le test Microtox®,
- Pour le test de toxicité chronique, réalisés sur éluat avec un seuil de CE 20 à 1 % : L'échantillon « 20E217149-013 » n'est pas considéré comme écotoxique par les tests sur la croissance de la population des Brachionus,
- Pour le test de toxicité terrestre, avec un seuil de CE 50 à 10 % : L'échantillon « 20E217149-013 » n'est pas considéré comme écotoxique.

Dans le cadre du critère HP14 et en fonction des seuils retenus par le Ministère de l'Ecologie, du Développement Durable et de l'Energie en 2016, l'échantillon « 20E217149-013 » n'est pas considéré comme écotoxique.

Sédiment	Classement sur la base des essais de toxicité aiguë	Classement sur la base des essais de toxicité chronique	Classement sur la base des essais de toxicité terestre	Sytnhèse
Composite Port "20E217149-014"	-	-	-	-

+ « ombré » : classé comme dangereux pour l'environnement - : classé comme non dangereux pour l'environnement

Figure 21 : Evaluation de la dangerosité de l'échantillon composite du Port

L'interprétation du laboratoire EUROFINS à l'issue de l'analyse de dangerosité est rappelée cidessous (cf. bordereau analytique du laboratoire en Annexe IX) :

- Pour le test de toxicité aiguë, réalisé sur éluat avec un seuil de CE 50 à 10 % : L'échantillon « 20E217149-014 » n'est pas considéré comme écotoxique par le test Microtox®,
- Pour le test de toxicité chronique, réalisés sur éluat avec un seuil de CE 20 à 1 % : L'échantillon « 20E217149-014 » n'est pas considéré comme écotoxique par les tests sur la croissance de la population des Brachionus,
- Pour le test de toxicité terrestre, avec un seuil de CE 50 à 10 % : L'échantillon « 20E217149-014 » n'est pas considéré comme écotoxique.

Dans le cadre du critère HP14 et en fonction des seuils retenus par le Ministère de l'Ecologie, du Développement Durable et de l'Energie en 2016, l'échantillon « 20E217149-013 » n'est pas considéré comme écotoxique.

3.3 Présentation des résultats selon l'arrêté du 12 décembre 2014

Le tableau suivant présente les résultats analytiques obtenus sur les prélèvements unitaires C1 à C12.

Les résultats analytiques présentés dans le tableau suivant respectent le code couleur suivant :

- non surligné pour les teneurs qui sont inférieures aux seuils ISDI (Installations de Stockage de Déchets Inertes),
- surligné en vert, pour les paramètres respectent les seuils ISDI en considérant les points dérogatoires précisés dans l'arrêté,
- surligné en rouge, pour les teneurs supérieures aux seuils ISDI.

Paramètres		Unités	C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8	C 9	C 10	C 11	C 12	seuils ISDI (*): exeptions possibles	
	Matière sèche		% P,B,	70	36,9	47,2	48,9	67,9	55,7	43	32,5	36	35,3	43,5	42,9	
	Carbone Organique Total par Combustion		mg/kg MS	16200	31200	28300	23600	13700	29900	28500	32500	33700	34900	23900	24300	30000 (*)
		Indice Hydrocarbures (C10-C40)		50,7	50,9	147	57,5	133	61	120	109	251	251	239	78,7	500
	Hydrocarbures totaux (C10-C40)	HCT (nC10 - nC16)	mg/kg MS	4,01	3,32	7,97	4,22	3,56	2,89	7,42	5,13	12,7	26,9	6,17	3,51	
		HCT (>nC16 - nC22)		8,3	14,9	29,4	20,2	40	18,3	40,4	30,1	58,4	53,7	52,8	21,2	
		HCT (>nC22 - nC30)		19,7	23,2	46,7	24,6	57,5	27,9	53,8	52,3	94,1	85,2	117	38,2	
		HCT (>nC30 - nC40)		18,6	9,45	62,7	8,46	32,2	11,8	18,4	21,7	86,1	85	63	15,8	
		Naphtalène		0,003	0,0094	0,011	0,025	0,0099	0,024	0,056	0,06	0,025	0,084	0,02	0,068	
		Acénaphtène		0,013	0,0082	0,0083	0,054	0,031	0,034	0,043	0,1	0,028	0,26	0,042	0,091	
		Acénaphthylène		0,04	0,034	0,076	0,16	0,066	0,11	0,12	0,32	0,19	0,53	0,28	0,21	
		Fluorène		0,019	0,017	0,025	0,11	0,047	0,073	0,084	0,14	0,06	0,35	0,1	0,19	
		Anthracène		0,046	0,036	0,074	0,32	0,1	0,14	0,22	0,42	0,17	0,69	0,29	0,39	
		Phénanthrène		0,16	0,12	0,3	1	0,35	0,6	0,77	1,5	0,87	2,4	1,4	1,6	
		Fluoranthène		0,68	0,35	1,5	3,7	0,99	1,5	2,3	3,6	4,9	4,9	5,5	3,7	
	Hydrocarbures	Pyrène		0,5	0,27	1,3	2,7	0,7	1,1	1,6	2,7	3,7	3,6	4	2,5	
	Aromatiques	Benzo-(a)-anthracène	mg/kg MS	0,3	0,22	0,59	1,3	0,53	0,69	0,89	2,3	1,6	4,1	1,8	1,5	
brut	Polycycliques	Chrysène		0,3	0,18	0,66	1,3	0,46	0,65	0,8	1,9	1,9	3,4	1,9	1,6	
ır b		Benzo(b)fluoranthène		0,47	0,43	1,1	1,9	0,87	1,2	1,5	3,1	3,1	4,7	2,9	2,5	
ns s		Benzo(k)fluoranthène		0,29	0,19	0,36	0,92	0,18	0,27	0,4	1,4	1	1,6	1,2	0,67	
Analyses sur		Benzo(a)pyrène		0,39	0,33	0,82	1,5	0,68	1	1,1	2,4	1,9	4,8	2,3	1,8	
naly		Dibenzo(a,h)anthracène		0,062	0,1	0,15	0,28	0,26	0,37	0,49	0,54	0,46	1,6	0,4	0,81	
An		Benzo(ghi)Pérylène		0,3	0,25	0,77	1,1	0,53	0,72	0,85	1,9	1,9	3,2	1,6	1,3	
		Indeno (1,2,3-cd) Pyrène		0,33	0,22	0,81	1,2	0,44	0,67	0,74	1,8	2,2	4	1,9	1,3	
		Somme des HAP		3,9	2,8	8,6	18	6,2	9,2	12	24	24	40	26	20	50
	РСВ	PCB 28		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	
		PCB 52		<0,001	<0,001	<0,001	<0,001	<0,001	0,0013	<0,001	0,001	0,0026	0,0017	0,0015	0,0013	
		PCB 101		0,0011	<0,001	0,0015	<0,001	0,0014	0,0023	0,002	0,0018	0,0031	0,0049	0,003	0,0014	
		PCB 118	mg/kg MS	0,0015	<0,001	0,0021	<0,001	0,0018	0,0024	0,0019	0,0012	0,0032	0,0042	0,0032	0,0018	
		PCB 138		0,0023	0,0012	0,0032	0,0013	0,0026	0,0053	0,0028	0,0021	0,006	0,0059	0,0039	0,0028	
		PCB 153		0,002	0,0015	0,0032	0,0016	0,0026	0,005	0,0031	0,0023	0,0068	0,0058	0,0046	0,0034	
		PCB 180		<0,001	<0,001	0,0012	<0,001	<0,001	0,0021	<0,001	<0,001	0,0023	0,002	0,0013	<0,001	
		Somme des PCB (7)		0,008	0,005	0,012	0,005	0,01	0,019	0,011	0,009	0,025	0,025	0,018	0,012	1
		Benzène		<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	
		Toluène		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	
	BTEX	Ethylbenzène	mg/kg MS	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	
	BIEA	o-Xylène	mg/ kg M3	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	
		m+p-Xylène		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	
		Somme des BTEX		0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	6
	Fraction soluble		mg/kg MS	25400	56900	47100	27200	12400	30600	38500	46900	44000	25900	26300	31800	4000 (*)
	Carbone Organique par oxydation (COT)		mg/kg MS	170	320	270	150	100	300	290	190	370	300	290	190	500
	Chlorures (Cl) Fluorures Sulfates		mg/kg MS	10600	25700	25000	11700	5890	13900	18700	22600	21100	13800	11000	12000	800 (*)
			mg/kg MS	5,18	6,02	6,67	5,02	<5,00	5,47	9,04	7,02	<5,00	<5,00	8,9	5,82	10
			mg/kg MS mg/kg MS	2610	4710	4430	2830	1540	2900	3990	5360	4540	3270	3960	4640	1000 (*)
at	Indice	Indice phénol (calcul mg/kg)		<0,51	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,51	<0,51	<0,50	<0,51	1
élu	Métaux	Arsenic (As)		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	0,5
Analyses sur éluat		Baryum (Ba)		<0,10	0,19	0,18	<0,10	0,19	0,22	0,12	0,15	0,49	0,41	0,17	0,19	20
		Chrome (Cr)		<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	0,16	<0,10	0,5
		Cuivre (Cu)		<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	0,21	<0,20	<0,20	<0,20	2
		Molybdène (Mo)	mg/kg MS	0,424	0,434	1,03	0,525	0,342	1,03	1,44	1,601	0,909	1,37	0,854	1,76	0,5
		Nickel (Ni)		<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	0,26	<0,10	0,4
		Plomb (Pb)		<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	0,5
		Zinc (Zn)		<0,20	<0,20	<0,20	<0,20	<0,20	0,54	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	4
		Mercure (Hg)		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,01
		Antimoine (Sb)		0,011	0,014	0,54	0,015	0,014	0,044	0,037	0,024	0,041	0,15	0,025	0,025	0,06
		Cadmium (Cd)		<0,002	<0,002	<0,002	<0,002	<0,002	0,002	<0,002	0,006	0,003	<0,002	<0,002	0,002	0,04
		Sélénium (Se)		<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,013	<0,01	<0,01	0,1

 $Figure~22: Pr\'esentation~des~r\'esultats~analytiques~obtenus~dans~les~s\'ediments~selon~l'arr\^et\'e~du~12/12/2014$

3.4 Paramètres complémentaires

En complément, afin de parfaire la connaissance physico-chimique des sédiments étudiés, et notamment en se basant sur les préconisations figurant dans les guides proposés par le Groupe GEODE en 2016 et le Cerema en 2018, des analyses complémentaires ont été menées. Ces dernières, non interprétées, sont présentées en suivant :

Paramètres	Unités	C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8	C 9	C 10	C 11	C 12
Pourcentage cumulé 0.02 à 2 μm	0/0	2	5,54	4,48	3,03	1,65	4,31	3,11	5,35	5,7	4,5	2,37	3,18
Pourcentage cumulé 0.02 à 20 μm	0/0	19,08	52,3	42,25	29,75	16,33	43,03	31,93	51,53	49,12	45,55	24,54	31,09
Pourcentage cumulé 0.02 à 63 μm	0/0	34,26	89,04	79,49	53	29,94	73,91	50,44	74,18	87,85	82,53	44,63	55,48
Pourcentage cumulé 0.02 à 200 μm	0/0	45,33	98,86	91,8	59,88	35,78	81,67	54,17	80,19	94,8	90,29	49,51	64,39
Pourcentage cumulé 0.02 à 2000 μm	%	100	100	100	100	100	100	100	100	100	100	100	100
Fraction 2 - 20 μm	0/0	17,09	46,76	37,77	26,73	14,68	38,73	28,83	46,18	43,42	41,04	22,17	27,92
Fraction 20 - 63 µm	0/0	15,18	36,74	37,24	23,25	13,62	30,88	18,51	22,65	38,73	36,99	20,09	24,39
Fraction 63 - 200 μm	0/0	11,06	9,82	12,31	6,88	5,84	7,76	3,74	6,01	6,95	7,76	4,89	8,91
Fraction 200 - 2000 μm	%	54,67	1,14	8,2	40,12	64,22	18,33	45,83	19,81	5,2	9,71	50,49	35,61
Azote Kjeldahl (NTK)	g/kg M.S.	1	3,5	2,2	1,7	0,6	2,4	2,4	5	3,6	4,1	2,8	2,8
Aluminium (Al)	mg/kg M.S.	13200	19900	13200	16000	9490	19100	18500	16700	16300	18400	14100	17100
Antimoine (Sb)	mg/kg M.S.	<1,00	1,75	<1,00	<1,00	<1,00	1,92	<1,00	<1,00	<1,00	<1,00	<1,01	2,4
Baryum (Ba)	mg/kg M.S.	27,4	31,8	45,2	31,4	23,3	40,8	52,2	34,6	66,5	69,8	66,5	54,6
Molybdène (Mo)	mg/kg M.S.	1,46	3,12	4,87	3,5	1,91	5,65	16,6	16,4	3,59	5,08	4,98	8,1
Phosphore (P)	mg/kg M.S.	414	596	440	422	286	446	388	393	597	638	349	409
Sélénium (Se)	mg/kg M.S.	0,67	1,17	1,02	1,04	0,6	1,19	1,26	1,16	1,21	1,56	0,88	1,08
Phosphore total (P2O5)	mg/kg M.S.	948	1370	1010	966	655	1020	888	901	1370	1460	801	938
Dibutylétain cation-Sn (DBT)	μg Sn/kg M.S.	<2,0	4,2	8,8	11	14	20	27	16	17	45	59	31
Tétrabutylétain -Sn (TeBT)	μg Sn/kg M.S.	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Monobutylétain cation-Sn (MBT)	μg Sn/kg M.S.	<2,0	2,9	4,3	5,2	8,7	12	15	10	12	18	19	14
Triphénylétain cation-Sn (TPhT)	μg Sn/kg M.S.	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	3,1	<2,0
MonoOctyletain cation-Sn (MOT)	μg Sn/kg M.S.	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
DiOctyletain cation-Sn (DOT)	μg Sn/kg M.S.	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
Tricyclohexyletain cation-Sn (TcHexT)	μg Sn/kg M.S.	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
Escherichia coli	NPP/g	< 56	< 56	< 56	< 56	< 56	< 56	< 56	< 56	< 56	<56	< 56	< 56

Figure 23 : Présentation des résultats analytiques complémentaires

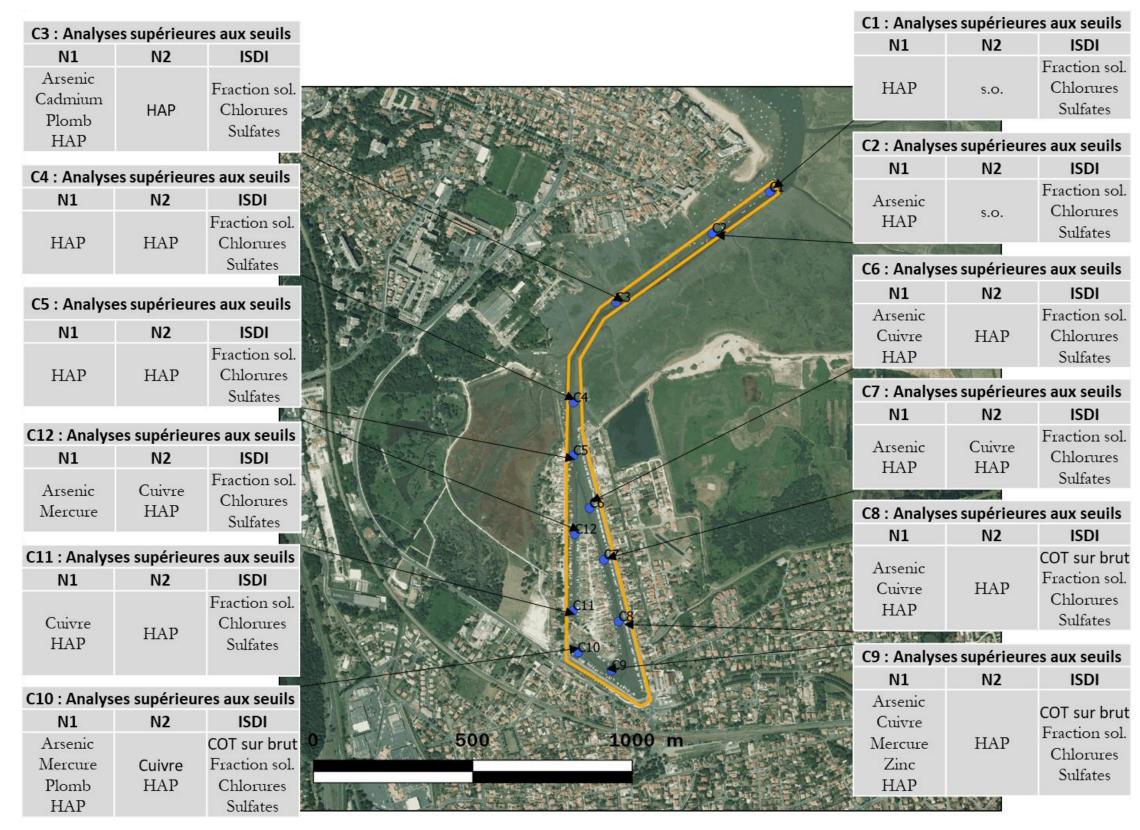


Figure 24 : Synthèse des résultats analytiques du port et de son chenal (N1/N2 et ISDI)

CONCLUSION

La conclusion porte sur les deux sites d'investigations : la déposante du port de la Mole d'une part et le port de la teste de Buch et son chenal d'accès d'autre part.

Déposante du port de la Mole :

Les analyses menées sur les sédiments de la déposante du Port de la Mole répondent aux recommandations des guides proposés par le Groupe GEODE en 2016 et le Cerema en 2018, à savoir notamment :

- les critères N1/N2 définis dans l'arrêté du 9 août 2006 ;
- les critères d'acceptation en Installation de Stockages de Déchets Inertes présentés dans l'arrêté du 12 décembre 2014.

Les résultats analytiques sur cette matrice ont mis en évidence :

- des dépassements des critères N1 en arsenic et en plomb ;
- des dépassements des critères N1 et/ou N2 en HAP sur la totalité des prélèvements réalisés ;
- un dépassement systématique des seuils ISDI fixés sur éluât pour la fraction soluble, les chlorures et les sulfates sur 5 des 8 prélèvements ;
- des dépassements ponctuels des seuils ISDI fixés sur éluât pour l'arsenic et le plomb;
- des dépassements sur éluât ciblés sur le prélèvement situé au niveau du bassin amont BS2 en nickel, zinc, antimoine et cadmium

Concernant les eaux souterraines, les analyses ont globalement porté sur les mêmes paramètres que ceux recherchés sur les sédiments. Les résultats analytiques mettent en exergue, sur la base des valeurs guides utilisées, des excès en carbone organique total (COT), arsenic, plomb et HAP. Les impacts en HAP étant essentiellement présents au niveau de Pz1 et Pz4.

Port de La teste de Buch et son chenal :

Les analyses menées sur les prélèvements répondent aux recommandations des guides proposés par le Groupe GEODE en 2016 et le Cerema en 2018, à savoir notamment :

- les critères N1/N2 définis dans l'arrêté du 9 août 2006 ;
- les critères d'acceptation en Installation de Stockages de Déchets Inertes présentés dans l'arrêté du 12 décembre 2014 ;
- la vérification du caractère écotoxique des sédiments (critère HP14).

Les résultats analytiques mettent en évidence :

- des dépassements des critères N1 et/ou N2 en métaux, et essentiellement en arsenic, cuivre et mercure,
- des dépassements des critères N1 et/ou N2 en HAP sur la totalité des prélèvements réalisés,
- un dépassement systématique des seuils ISDI fixés sur éluât pour la fraction soluble, les chlorures et les sulfates,
- des dépassements ponctuels des seuils ISDI fixés sur éluât pour le molybdène et l'antimoine,
- l'absence écotoxicité sur l'échantillon composite « Chenal » analysé,
- l'absence écotoxicité sur l'échantillon composite « Port » analysé.

Fait à Léognan, le 9 mars 2021

Page 32 sur 33

ANNEXES